ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS)

ECOSTRESS Level-4 DisALEXI-JPL Evaporative Stress Index (ECO4ESIALEXI) User Guide

Version 1
May 20, 2021

Kerry Cawse-Nicholson
ECOSTRESS Science Team
Jet Propulsion Laboratory
California Institute of Technology

Martha Anderson
ECOSTRESS Algorithm Development Team
ECOSTRESS Science Team
U.S. Department of Agriculture
Agricultural Research Service

National Aeronautics and Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California
This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

Contacts

Readers seeking additional information about this document may contact the following ECOSTRESS Science Team members:

- Kerry Cawse-Nicholson
 MS 183-501
 Jet Propulsion Laboratory
 4800 Oak Grove Dr.
 Pasadena, CA 91109
 Email: Kerry-anne.cawse-nicholson@jpl.nasa.gov
 Office: (818) 354-1594

- Martha C. Anderson
 Hydrology and Remote Sensing Laboratory
 USDA - ARS
 103000 Baltimore Ave
 Beltsville, MD 20705
 Email: martha.anderson@ars.usda.gov
 Office: (301) 504-6616

- Simon J. Hook
 MS 183-501
 Jet Propulsion Laboratory
 4800 Oak Grove Dr.
 Pasadena, CA 91109
 Email: simon.j.hook@jpl.nasa.gov
 Office: (818) 354-0974
 Fax: (818) 354-5148
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEXI</td>
<td>Atmosphere–Land Exchange Inverse</td>
</tr>
<tr>
<td>ARS</td>
<td>Agricultural Research Service</td>
</tr>
<tr>
<td>ATBD</td>
<td>Algorithm Theoretical Basis Document</td>
</tr>
<tr>
<td>Cal/Val</td>
<td>Calibration and Validation</td>
</tr>
<tr>
<td>CDL</td>
<td>Cropland Data Layer</td>
</tr>
<tr>
<td>CFSR</td>
<td>Climate Forecast System Reanalysis</td>
</tr>
<tr>
<td>CONUS</td>
<td>Contiguous United States</td>
</tr>
<tr>
<td>DisALEXI</td>
<td>Disaggregated ALEXI algorithm</td>
</tr>
<tr>
<td>ECOSTRESS</td>
<td>ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station</td>
</tr>
<tr>
<td>ET</td>
<td>Evapotranspiration</td>
</tr>
<tr>
<td>EVI-2</td>
<td>Earth Ventures Instruments, Second call</td>
</tr>
<tr>
<td>GET-D</td>
<td>GOES Evapotranspiration and Drought System</td>
</tr>
<tr>
<td>HRSL</td>
<td>Hydrology and Remote Sensing Laboratory</td>
</tr>
<tr>
<td>ISS</td>
<td>International Space Station</td>
</tr>
<tr>
<td>L-2</td>
<td>Level 2</td>
</tr>
<tr>
<td>L-3</td>
<td>Level 3</td>
</tr>
<tr>
<td>LST</td>
<td>Land-Surface Temperature</td>
</tr>
<tr>
<td>LTAR</td>
<td>Long-Term Agroecosystem Research</td>
</tr>
<tr>
<td>MODIS</td>
<td>MODerate-resolution Imaging Spectroradiometer</td>
</tr>
<tr>
<td>NASS</td>
<td>National Agricultural Statistics Service</td>
</tr>
<tr>
<td>NLCD</td>
<td>National Land Cover Dataset</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanographic and Atmospheric Administration</td>
</tr>
<tr>
<td>PM</td>
<td>Penman-Monteith</td>
</tr>
<tr>
<td>RMSD</td>
<td>Root Mean Squared Difference</td>
</tr>
<tr>
<td>SEB</td>
<td>Surface Energy Balance</td>
</tr>
<tr>
<td>TIR</td>
<td>Thermal Infrared</td>
</tr>
<tr>
<td>TSEB</td>
<td>Two-Source Energy Balance</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
</tbody>
</table>
Contents

1 Introduction .. 1
 1.1 Purpose .. 1
 1.2 Scope and Objectives .. 2

2 Dataset Description and Requirements .. 2

3 Algorithm Selection .. 2

4 Retrieval of actual-to-reference ET ratio (f$_{RET}$) .. 5
 4.1 Actual ET from DisALEXI ... 5
 4.2 Reference ET .. 5
 4.3 Gridded f$_{RET}$ datasets .. 5

5 Data Processing .. 7

6 Product Evaluation ... Error! Bookmark not defined.

7 Mask/Flag Derivation ... Error! Bookmark not defined.

8 Metadata ... 8

9 Acknowledgements .. 8

10 References .. 9
1 Introduction

1.1 Purpose

Operational applications in agriculture and water resource management are increasingly requiring timely information about water use at fine spatial resolution over large regions. Maps of daily or weekly evapotranspiration (ET) are needed at field scale for managing irrigation, monitoring water use, and planning for future water demand. Furthermore, the drought and agricultural communities want information about soil moisture deficiencies and crop stress at similar spatiotemporal scales to inform drought response and mitigation decision making, and to update yield projections throughout the growing season. In support of these informational needs, the ECOSTRESS mission will develop datastreams describing both ET and vegetation stress at 70-m spatial resolution with frequent updates governed by the ECOSTRESS overpass schedule.

This stress information will be conveyed in terms of the impacts on evapotranspiration. ET describes both crop water use through transpiration (T) and water lost through direct soil evaporation (E), making it a good indicator of soil moisture availability and vegetation health. The value of ET as a vegetation stress signal has been long appreciated by agronomists. Jensen (1968) related ET to crop yield through the ratio of actual to reference ET, referred to here as \(f_{RET} \) but also known in agronomy as the “crop coefficient”. This ratio reflects the seasonally changing balance between crop available soil water, vegetation amount, and the atmospheric demand for water vapor. The milestone publication of Doorenbos and Kassam (1979) established relationships between relative yield losses and reduction in evapotranspiration from potential levels.

While crop models typically determine \(f_{RET} \) using a simple soil water balance approach, it has been demonstrated that energy balance methods based on thermal remote sensing can provide a diagnostic assessment of this stress functional without requiring information about precipitation or soil texture (Moran 2003; Anderson et al. 2007a; Hain et al. 2009). This is a benefit for large area mapping of ET and crop stress, particularly in data-sparse regions or areas where the local rainfall-driven water balance may be modified by shallow water tables, irrigation or drainage (Hain et al. 2015). In this approach, a surface energy balance model is used to transform thermal retrievals of land-surface temperature (LST) into estimates of evaporative cooling required to maintain LST given a specified radiation load (Kalma et al. 2008; Kustas and Anderson 2009).

The Evaporative Stress Index (ESI), representing standardized anomalies in \(f_{RET} \) derived via energy balance, was developed as a remote sensing indicator of agricultural drought and vegetation stress (Anderson et al. 2007b). Regional ESI products (3-10 km resolution) generated with LST retrievals from geostationary (GEO) satellites have demonstrated good correspondence with standard drought indicators (Anderson et al. 2011; 2013), but with advantages in timely detection of drought impacts on agroecosystems as they develop on the ground (Anderson et al. 2015; 2016b; 2016a). The coarse resolution afforded by GEO platforms, however, results in mixed pixels, combining stress signals from multiple land-cover types and land/water-management strategies.

ECOSTRESS has the spatial and temporal resolution to facilitate mapping of the \(f_{RET} \) stress index at the scales that land and water is being actively managed over agricultural landscapes. Because ECOSTRESS will have a relatively short mission lifetime, it cannot provide the long baseline required to compute true ESI anomaly products. Still, ECOSTRESS provides the means to better understand the physiological responses that drive these anomalies. ECOSTRESS \(f_{RET} \) time-series will provide diagnostic information about drought resilience at patch scale due to variability in,
e.g., plant rooting depth, vegetation type/crop varietal, groundwater access, or crop/water management strategy. The high temporal revisit of ECOSTRESS will enable quantification of drought impact early warning capacity conveyed by TIR imaging, particularly during flash drought events that are not well-captured in standard precipitation-based indices. Unambiguous detection of stress during critical phenological phases in crop development is key to improving crop yield monitoring, both within the U.S. and globally.

In this Algorithm Theoretical Basis Document (ATBD), we describe the approach used to generate L4 (DisALEXI-JPL ESI) maps of actual-to-reference ET ratio using ET products described in the L3 (DisALEXI-JPL ET) ATBD.

1.2 **Scope and Objectives**

In this ATBD, we provide:

1. Description of the \(f_{RET} \) dataset characteristics and requirements;
2. Justification for the choice of algorithm;
3. Description of the general form of the algorithm;
4. Required algorithm adaptations specific to the ECOSTRESS mission;
5. Required ancillary data products with potential sources and back-up sources;

2 **Dataset Description and Requirements**

Attributes of the L4 (DisALEXI-JPL ESI) \(f_{RET} \) data produced for the ECOSTRESS mission include:

- ECOSTRESS native resolution of 70 m at nadir;
- Based on the DisALEXI-USDA algorithm that currently produces 30 m ET and ESI over select sites;
- Developed on ECOSTRESS overpass dates for pixels that are clear at the overpass time of the International Space Station (ISS);
- Latency as required by the ECOSTRESS Science Data System (SDS) processing system;
- Includes all of the contiguous United States (CONUS).

3 **Algorithm Selection**

The reference ET ratio formulation described here was devised to be optimally conforming to the operational GET-D ESI dataset generated by NOAA. This dataset was selected for downscaling analyses using ECOSTRESS ET products due to the following attributes:

- Physically defensible;
- Good performance within targeted agricultural regions;
• High sensitivity and dependency on remote sensing measurements;
• Published record of algorithm maturity, stability, and validation.

The Evaporative Stress Index (ESI) is computed from clear-sky estimates of the relative ET fraction, $f_{\text{RET}} = \frac{ET}{ET_{o}}$, where ET is actual ET retrieved using the Atmosphere-Land Exchange Inverse (ALEXI) surface energy balance model and ETo is the Penman-Monteith (FAO-56 PM) reference ET for grass as described by Allen et al. (1998). Normalizing by reference ET serves to reduce impact of drivers of the evaporative flux that are less directly related to soil moisture limitations (e.g., insolation load and atmospheric demand). To identify areas where f_{RET} is higher or lower than normal for a given time interval within the growing season, ESI is expressed as a seasonally varying standardized anomaly in f_{RET} with respect to long-term baseline conditions.

2012 FLASH DROUGHT

Figure 1: Monthly maps of drought depictions during the 2012 flash drought event from the US Drought Monitor (USDM), ESI, anomalies in NASS reports of county scale topsoil moisture conditions, and the Vegetation Drought Response Index (VegDRI) which is driven primarily by anomalies in the Normalized Difference Vegetation Index (NDVI). ESI captures the developing stress signal early, starting in May. This is particularly evident in the change anomalies shown in the right column, highlighting regions of rapid ESI change.

Studies (Anderson et al. 2013; Otkin et al. 2013; 2014; 2016) have demonstrated that the thermal infrared land-surface temperature (LST) inputs to the ESI algorithm provide early warning of developing crop stress during rapid onset (flash) drought events. The emergence of stress in ESI
during the 2012 flash drought in the central United States preceded signals in vegetation index-based indicators and is in good accord with ground-based characterizations of topsoil moisture condition distributed by the National Agricultural Statistics Service (NASS), collected at the county level by trained observers (Fig. 1).

ESI products are operationally generated daily over North America at 8-km resolution (http://www.ospo.noaa.gov/Products/land/getd/) by NOAA’s Office of Satellite and Product Operations (OSPO) as part of the Geostationary Operational Environmental Satellites (GOES) ET and Drought (GET-D) system. These continental-scale drought products are used by NOAA in monthly State of the Climate reports (https://www.ncdc.noaa.gov/sotc/) reports, and are distributed publically through the National Integrated Drought Information System (NIDIS: drought.gov) for use in U.S. and North American Drought Monitors and other monitoring applications. A 4-km version of the same modeling system for the contiguous U.S. (CONUS) is maintained at NASA Marshall Space Flight Center. Expansion to global coverage at 5-km resolution is in progress, using day-night temperature differences from the Moderate resolution Imaging Spectroradiometer (MODIS) (Hain and Anderson 2017).

The ECOSTRESS L4 (DisALEXI-JPL ESI) actual-to-reference ET ratio (f_{RET}) product is designed to be compatible with the operational NOAA GET-D ESI product. Actual ET inputs are produced by spatially disaggregating the GET-D 4-km ET datasets using ECOSTRESS L2 LST data, and the same FAO-56 PM reference ET formulation is used in both systems.
4 Retrieval of actual-to-reference ET ratio (f\textsubscript{RET})

4.1 Actual ET

Procedures for generating ECOSTRESS L3 (DisALEXI-JPL ET) actual ET products on ECOSTRESS overpass dates using the ALEXI disaggregation (DisALEXI) algorithm are described in the L3 (DisALEXI-JPL ET) ATBD.

4.2 Reference ET

Reference ET used in the DisALEXI-JPL L4 ECOSTRESS f\textsubscript{RET} products will be consistent with the data layers used in the construction of the operational NOAA-based ESI datasets to facilitate direct comparisons and relative downscaling.

The NOAA ESI uses the FAO-56 Penman-Monteith (PM) formulation for reference ET (ET\textsubscript{o}) over a grass reference surface, as described by Allen et al., (1998). The PM combination equation for ET, including both energy balance and advective effects, is formulated as

\[
\lambda ETo = \frac{\Delta(RN-G) + \rho_c c_p \frac{(e_s-e_a)}{r_s \gamma}}{\Delta + \gamma \left(\frac{r_s}{r_a} \right)}
\]
(Eq. 1)

where \(RN\) is the net radiation, \(G\) is the soil heat flux, \((e_s - e_a)\) is the vapor pressure deficit in the air layer just above the surface, \(\rho_c\) is the mean air density at constant pressure, \(c_p\) is the specific heat of the air, \(\Delta\) represents the slope of the saturation vapor pressure temperature relationship, \(\gamma\) is the psychrometric constant, and \(r_s\) and \(r_a\) are the bulk surface and aerodynamic resistances.

Assuming a hypothetical well-watered reference surface with uniform characteristics, many of the inputs to Eq. 1 can be simplified, removing dependencies on specific surface conditions. Allen et al. (1998) give the following simplified equation for hourly ETo (mm hr-1) for a grass reference surface “with an assumed crop height of 0.12m, a fixed surface resistance of 70 s m-1 and an albedo of 0.23”:

\[
ETo = \frac{0.408\Delta(RN-G) + \gamma \frac{37}{r_a + 273} u (e_o(T_o) - e_a)}{\Delta + \gamma \left(1 + 0.24 u \right)}
\]
(Eq. 2)

Here, \(u\) is the average hourly wind speed (m s-1), \(e_o(T_o)\) is the saturation vapor pressure at air temperature \(T_o\) (C), \(e_a\) is the average hourly vapor pressure (kPa), and the wind coefficient 0.24 is consistent with daytime recommended values for a short reference crop (Allen et al. 2005). Net radiation (RN) and soil heat (G) (both in MJ m-2 h-1) for the reference surface are computed from measurements of solar radiation \(R_g\) as described in the FAO-56 report (Chapter 2), with \(G\) assumed to be approximately 0.1RN at the hourly timestep.

4.3 Gridded f\textsubscript{RET} datasets

For each ECOSTRESS overpass day, ETo is computed at an hourly timestep using gridded (0.25° resolution) meteorological inputs from the Climate Forecast System Reanalysis (CFSR; Saha et al. 2010). Data fields used include solar radiation \(R_g\) at 1-hr native temporal resolution and surface wind speed \(u\), vapor pressure \(e_a\), and air temperature \(T_o\) (all at 3-hr timesteps). These CFSR fields are resampled onto the ECOSTRESS resolution using nearest neighbor pixel assignment, then spatially smoothed with a Gaussian function to reduce edge effects at the 0.25° scale. The 3-hr \(u\), \(e_a\) and \(T_o\) fields are linearly interpolated in time to hourly timesteps, while \(R_g\) is
provided at hourly by CFSR. These hourly data are used to compute ETo at hourly timesteps with Eq. 2, then the hourly reference are time-integrated to a daily value ($ETod$) for the overpass day. For clear pixels within the ET grid, we compute

$$f_{RET} = \frac{ETd}{ETod} \quad \text{(Eq. 3)}$$

where ETd is the actual daily ET retrieved for the ECOSTRESS overpass date as part of the ECOSTRESS L3 (DisALEXI-JPL ET) processing system. Gridded f_{RET} datasets are generated over the agricultural landscape targets identified in the L3 (DisALEXI-JPL ET) ATBD.
5 Data Processing

The \(f_{RET} \) processing stream fully contained within the implementation of the L3 DisALEXI-JPL ET python code, which already ingests CSFR datasets from NASA Marshall Space Flight Center. This code segment computes hourly reference ET for use in upscaling actual ET retrieved at the ECOSTRESS overpass time to a daily (24-hr) total \((ET_{od})\). Then, using \(ET_{od}\) and \(ETd\) from L3 (DisALEXI-JPL ET), the ratio of actual-to-reference ET \((f_{RET})\) is computed for clear pixels in the ECOSTRESS LST product (Eq. 3).

The DisALEXI-JPL L3 and L4 code is fully implemented in Python, and the data is delivered to the Land Processes Distributed Active Archive Center (LP DAAC) for dissemination.
6 Metadata
- unit of measurement: unitless (mm d$^{-1}$ per mm d$^{-1}$)
- range of measurement: approximately 0 to 1
- projection: ECOSTRESS
- spatial resolution: ECOSTRESS (70 m at nadir)
- temporal resolution: dynamically varying with precessing ISS overpass; represents daily value on day of overpass, local time
- spatial extent: CONUS
- start date time: near real-time
- end data time: near real-time
- number of bands: not applicable
- data type: float
- min value: 0
- max value: X
- no data value: 9999
- bad data values: 9999
- flags: quality level 1-4 (best to worst)

7 Acknowledgements
We thank Martha Anderson, Munish Sikka, Erin Wong, Gregory Halverson, Chris Hain, Feng Gao, Bill Kustas, John Norman, Carmelo Cammalleri, Peijuan Wang, Kate Semmens, Yun Yang, Wayne Dulaney, Liang Sun, and Yang Yang for contributions to the algorithm development described in this ATBD.
8 References

