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Abstract 
 

The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station 

(ECOSTRESS) mission was selected as a NASA Earth-Ventures Instrument (EV-I) Class-D 

mission on the International Space Station (ISS). ECOSTRESS will answer science questions 

related to water use and availability in several key biomes of the terrestrial biosphere using 

temperature information derived from the thermal infrared (TIR) measurement. The inclined, 

precessing ISS orbit will enable ECOSTRESS to sample the diurnal cycle in critical regions across 

the globe at spatiotemporal scales unexploited by current instruments in Sun-synchronous polar 

and high-altitude geostationary orbits. The instrument includes a TIR multispectral scanner with 

five spectral bands in the TIR between 8 and 12.5 µm, and leverages off the functionally-tested 

Prototype HyspIRI Thermal Infrared Radiometer (PHyTIR) space-ready hardware developed 

under the NASA Instrument Incubator Program. The five bands have a NEΔT of <0.1 K at 300K 

and all bands have a spatial scale of 38m x 68m with a swath width of 402 km (53). The two 

primary Level-2 products that will be generated by ECOSTRESS TIR data are the land surface 

temperature (LST) and spectral emissivity. The surface radiance emitted from the Earth's surface 

depends on both the LST and emissivity, and separating these two components from the total 

radiance is challenge because there are more unknowns than there are measurements - an 

underdetermined system. For example, for the five ECOSTRESS bands there will be five 

measurements and six unknowns (five band emissivities and one temperature). Various approaches 

have been proposed to solve this ill-posed problem. One such approach, developed for ASTER on 

NASA's Terra platform, and now used for the MODIS MxD21 and VIIRS VNP21 LST products, 

is termed the Temperature Emissivity Separation (TES) algorithm. Using numerical simulations, 

a total uncertainty of 1 K in surface temperature was estimated for a nominal 5-band TES 

algorithm. This ATBD will outline and detail application of the TES algorithm to ECOSTRESS 

data including atmospheric correction of the at-sensor radiance and uncertainty analysis of the 

retrieval. A validation plan for the L2 products will also be detailed.  
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1 Introduction 

The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station 

(ECOSTRESS) mission consists of a thermal infrared (TIR) multispectral scanner with five 

spectral bands operating between 8 and 12.5 µm. The TIR data will be acquired at a spatial 

resolution of 38m x 68m with a swath width of 402 km (53) from the nominal International Space 

Station (ISS) altitude of 400 +/- 25 km. This document outlines the theory and methodology for 

generating the ECOSTRESS TIR Level-2 land surface temperature and emissivity (LST&E) 

products. These products are derived from the five TIR spectral bands between 8 and 12.5 µm. 

The LST&E products are retrieved from the surface spectral radiance that is obtained by 

atmospherically correcting the at-sensor spectral radiance. Knowledge of the surface emissivity is 

critical for accurately recovering the surface temperature, a key climate variable in many scientific 

studies from climatology to hydrology, modeling the greenhouse effect, drought monitoring, and 

land surface models (Anderson et al. 2007; French et al. 2005; Jin and Dickinson 2010). 

ECOSTRESS will address critical questions on plant–water dynamics and future 

ecosystem changes with climate through an optimal combination of TIR measurements with high 

spatiotemporal and spectral resolution from the ISS. ECOSTRESS will fill a key gap in our 

observing capability, advance core NASA and societal objectives, and allow us to address the 

following science objectives: 1. Identify critical thresholds of water use and water stress in key 

climate sensitive biomes; 2. Detect the timing, location, and predictive factors leading to plant 

water uptake decline and/or cessation over the diurnal cycle; and, 3. Measure agricultural water 

consumptive use over the contiguous United States (CONUS) at spatiotemporal scales applicable 

to improve drought estimation accuracy. 
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 These questions will be answered using the ECOSTRESS Level-3 products; 

Evapotranspiration (ET), Water Use Efficiency (WUE), and Evaporative Stress Index (ESI). The 

LST, which can be retrieved remotely from thermal infrared (TIR; 8-12.5 μm) retrievals is a 

necessary input to energy balance models that derive ET (Allen et al. 2007; Anderson et al. 2011; 

Fisher et al. 2008). Currently, there is no single satellite sensor or constellation of sensors that 

provide TIR data with sufficient spatial, temporal, and spectral resolution to reliably estimate ET 

at the global to local scale over the diurnal cycle. Measurements are either too coarse (e.g., 

MODIS, GOES: >1-km resolution) or infrequent (e.g., Landsat: 16-day revisit). Table 1 gives 

details of measurement characteristics of ECOSTRESS compared to current and future TIR 

missions. 

In addition to surface energy balance, LST&E products are essential for a wide range of 

other Earth system studies. For example, emissivity spectral signatures are important for geologic 

studies and mineral mapping studies (Hook et al. 2005; Vaughan et al. 2005). This is because 

emissivity features in the TIR region are unique for many different types of materials that make 

up the Earth's surface, for example, quartz, which is ubiquitous in most of the arid regions of the 

world. Emissivities are also used for land use and land cover change mapping since vegetation 

fractions can often be inferred if the background soil is observable (French et al. 2008).  

The ECOSTRESS TIR measurement derives its heritage from the ASTER measurement in 

terms of number of bands and spatial resolution. ASTER is a five-channel multispectral TIR 

scanner that was launched on NASA's Terra spacecraft in Dec. 1999 with a 90-m spatial resolution 

and revisit time of 16 days. The ECOSRESS L2 products will be produced over a set of 'hotspot' 

regions of the globe where global models disagree on Water Use Efficiency (WUE = GPP/ET) 

based biome changes with climate change. These include the boreal forests, agricultural regions, 
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and Tropical/Dry Transition forests. ECOSTRESS will reduce the uncertainty in measurements of 

WUE. It is anticipated that the ECOSTRESS L2 products will be merged to produce weekly and 

monthly gridded products. The generation of  these higher level merged products is not considered 

to be a Project activity, however. The Level 2 LST product will be validated with a combination 

of Temperature-based (Coll et al. 2005; Hook et al. 2004) and Radiance-based methods (Hulley 

and Hook 2012; Wan and Li 2008) using a global set of validation sites. The Level 2 emissivity 

product will be validated using a combination of lab-measured samples collected at various sand 

dune sites, and with the ASTER Global Emissivity Database (ASTER GED)  (Hulley and Hook 

2009b).  

Maximum radiometric emission for the typical range of Earth surface temperatures, 

excluding fires and volcanoes, is found in two infrared spectral "window" regions: the midwave 

infrared (3.5–5 µm) and the thermal infrared (8–13 µm). The radiation emitted in these windows 

for a given wavelength is a function of both temperature and emissivity. Determining the separate 

contribution from each component in a radiometric measurement is an ill-posed problem since 

there will always be more unknowns—N emissivities and a single temperature—than the number 

of measurements, N, available. For ECOSTRESS, we will be solving for one temperature and five 

emissivities (ECOSTRESS TIR bands 1–5). Therefore, an additional constraint is needed, 

independent of the data. There have been numerous theories and approaches over the past two 

decades to solve for this extra degree of freedom. For example, the ASTER Temperature 

Emissivity Working Group (TEWG) analyzed ten different algorithms for solving the problem 

(Gillespie et al. 1999). Most of these relied on a radiative transfer model to correct at-sensor 

radiance to surface radiance and an emissivity model to separate temperature and  

Table 1: ECOSTRESS measurement characteristics as compared to other spaceborne TIR instruments. 
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Instrument Platform Resolution (m) Revisit 

(days) 

Daytime 

overpass 

TIR bands  

(8-12.5 µm) 

Launch year 

ECOSTRESS ISS 38 × 68 3-5 Multiple 5 2018 

HyspIRI TBD 60 5 10:30 am 7 2024 

ASTER Terra  90 16 10:30 am 5 1999 

ETM+/TIRS Landsat 7/8 60-100 16 10:11 am 1/2 1999/2013 

VIIRS Suomi-NPP 750 Daily 1:30 am/pm 4 2011 

MODIS Terra/Aqua 1000 Daily 10:30/1:30 

am/pm 

3 1999/2002 

GOES Multiple 4000 Daily Every 15 min 2 2000 

 

 emissivity. Other approaches include the split-window (SW) algorithm, which extends the SST 

SW approach to land surfaces, assuming that land emissivities in the window region (10.5–12 µm) 

are stable and well known. However, this assumption leads to unreasonably large errors over 

barren regions where emissivities have large variations both spatially and spectrally. The ASTER 

TEWG finally decided on a hybrid algorithm, termed the temperature emissivity separation (TES) 

algorithm, which capitalizes on the strengths of previous algorithms with additional features 

(Gillespie et al. 1998).  

TES is applied to the land-leaving TIR radiances that are estimated by atmospherically 

correcting the at-sensor radiance on a pixel-by-pixel basis using a radiative transfer model. TES 

uses an empirical relationship to predict the minimum emissivity that would be observed from a 

given spectral contrast, or minimum-maximum difference (MMD) (Kealy and Hook 1993; 

Matsunaga 1994). The empirical relationship is referred to as the calibration curve and is derived 

from a subset of spectra in the ASTER spectral library (Baldridge et al. 2009). A new calibration 

curve, applicable to ECOSTRESS TIR bands, will be computed using the latest ASTER spectral 
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library v2 (Baldridge et al. 2009), in addition to spectra from 9 pseudo-invariant sand dune sites 

located in the US Southwest (Hulley et al. 2009a). TES has been shown to accurately recover 

temperatures within 1 K and emissivities within 0.015 for a wide range of surfaces and is a well 

established physical algorithm that produces seamless images with no artificial discontinuities 

such as might be seen in a land classification type algorithm (Gillespie et al. 1998). 

The remainder of the document will discuss the ECOSTRESS instrument characteristics, 

provide a background on TIR remote sensing, give a full description and background on the 

atmospheric correction and the TES algorithm, provide quality assessment, discuss numerical 

simulation studies and, finally, outline a validation plan. 

  



ECOSTRESS LEVEL-2 ATBD  

6 

2 ECOSTRESS Instrument Characteristics 

 The ECOSTRESS instrument will be implemented by placing the existing space-ready 

Prototype HyspIRI Thermal Infrared Radiometer (PHyTIR) on the ISS and using it to gather the 

measurements needed to address the science goals and objectives. PHyTIR was developed under 

the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP).  

 The TIR instrument will acquire data from the ISS with a 38-m in-track by 68-m cross-

track spatial resolution in five spectral bands, located in the TIR part of the electromagnetic 

spectrum between 8 and 12.5 µm  shown in Figure 1. The center position and width of each band 

is provided in Table 2. The positions of three of the TIR bands closely match the first three 

thermal bands of ASTER, while two of the TIR bands match bands of ASTER and MODIS 

typically used for split-window type applications (ASTER bands 12–14 and MODIS bands 31, 

32). It is expected that small adjustments to the band positions will be made based on ongoing 

engineering filter performance capabilities. 

 

Figure 1: ECOSTRESS and heritage ASTER and MODIS TIR instrument spectral bands from 8-12.5 micron 

with a typical atmospheric transmittance spectrum in black highlighting the atmospheric window regions. 
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Figure 2: ECOSTRESS TIR scanning scheme  

 The TIR instrument will operate as a push-whisk mapper, similar to MODIS but with 256 

pixels in the cross-whisk direction for each spectral channel (Figure 2), which enables a wide swath 

and high spatial resolution. As the ISS moves forward, the scan mirror sweeps the focal plane 

ground projection in the cross-track direction. Each sweep is 256-pixels wide. The different 

spectral bands are swept across a given point on the ground sequentially. From the 400±25-km 

ISS altitude, the resulting swath is 402 km wide. A wide continuous swath is produced even with 

an ISS yaw of up to ±18.5°.A conceptual layout for the instrument is shown in Figure 3. The scan 

mirror rotates at a constant angular speed. It sweeps the focal plane image 53 across nadir, then  

to two on-board blackbody targets at 300 K and 340 K. Both blackbodies will be viewed with each 

cross-track sweep every 1.29 seconds to provide gain and offset calibrations.  

2.1 Radiometer 

 The radiometer was designed and built by experienced flight hardware engineers with 

flight in mind. Preliminary structural analysis indicates that, with a change of the yoke material  
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Figure 3: ECOSTRESS TIR conceptual layout 

from 6061 to 7075 aluminum, the radiometer structure will have the necessary margins to 

withstand launch loads. Phase A-B will include a full structural analysis. The Thales LPT9310 

cryocoolers will be replaced to change the welded tubing length connecting the compressors to 

the expanders. Also, the existing spectral filter assembly with three filters will be replaced with a 

new assembly containing the five filters. All replacements are straightforward, requiring only 

disassembly and reassembly, using standard flight procedures and documentation. 

2.2 Optics 

The f/2 optics design is all reflective, with gold-coated mirrors.  The 60-K focal plane will be 

single-bandgap mercury cadmium telluride (HgCdTe) detector, hybridized to a CMOS readout 

chip, with a butcher block spectral filter assembly over the detectors.  Thirty-two analog output 

lines, each operating at 10–12.5 MHz, will move the data to analog-to-digital converters. All the 

TIR channels are quantized at 14 bits. Expected sensitivities of the five channels, expressed in 

terms on noise-equivalent temperature difference, are shown in Figures 4 and 5. The TIR 

instrument will have a swath width of 402 km (53) with a pixel spatial resolution of 38m x 68 m 

and it will acquire data over key climate sensitive biomes including tropical/dry transition forests 

and boreal forests. The large swath width of the TIR instrument combined with the inclined, 
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precessing ISS orbit will enable ECOSTRESS to sample at varying times throughout the day over 

the course of a year. Figure 6 shows an example at 50 latitude. 

 

Figure 4: ECOSTRESS TIR predicted sensitivity 200–500 K. 

 

 

Figure 5: ECOSTRESS TIR predicted sensitivity 300–1100 K. 
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Figure 6: ECOSTRESS number of overpasses versus overpass time at 50 latitude. 
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Table 2: ECOSTRESS TIR Instrument and Measurement Characteristics 

Spectral 

Bands (µm) 8.28, 8.63, 9.07, 10.6, 12.05 

Bandwidth (µm) 0.34, 0.35, 0.36, 0.54, 0.54 

Accuracy at 300 K <0.01 µm 

Radiometric 

Range Bands 1–5 = 200 K – 500 K;  

Resolution < 0.05 K, linear quantization to 14 bits 

Accuracy < 0.5 K 3-sigma at 250 K 

Precision (NEdT) < 0.1 K 

Linearity >99% characterized to 0.1 % 

Spatial 

IFOV 38 m in-track, 68 m cross-track 

MTF >0.65 at FNy 

Scan Type Push-Whisk 

Swath Width at 400-km altitude 402 km (+/- 26.5°) 

Cross Track Samples 6,186 

Swath Length 9.8 km (1.29 sec) 

Down Track Samples 256 

Band to Band Co-Registration 0.2 pixels (12 m) 

Pointing Knowledge 10 arcsec (0.5 pixels) (approximate value, currently under evaluation) 

Temporal 

Orbit Crossing Multiple 

Global Land Repeat Multiple 

On Orbit Calibration 

Lunar views 1 per month {radiometric} 

Blackbody views 1 per scan {radiometric} 

Deep Space views 1 per scan {radiometric} 

Surface Cal Experiments 2 (day/night) every 5 days {radiometric}  

Spectral Surface Cal Experiments 1 per year 

Data Collection 

Time Coverage Day and Night 

Land Coverage Land surface above sea level 

Water Coverage n/a  

Open Ocean n/a 

Compression 2:1 lossless 
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3 Science Objectives 

ECOSTRESS will address critical questions on plant–water dynamics and future ecosystem 

changes with climate through an optimal combination of TIR measurements with high 

spatiotemporal resolution (38 × 68 m; every few days at varying times of day), and spectral 

resolution (5 spectral bands) from the International Space Station (ISS). The overarching goal of 

the ECOSTRESS is to measure water use and water stress across natural and managed ecosystems 

to understand vegetation change under limiting water conditions. This overarching goal will be 

answered by three broad questions; 

 How is the terrestrial biosphere responding to changes in water availability? 

 How do changes in diurnal vegetation water stress impact the global carbon cycle? 

 Can agricultural vulnerability be reduced through advanced monitoring of agricultural 

water consumptive use and improved drought estimation? 

To address these science questions, three primary objectives have been identified: 

1. Identify critical thresholds of water use and water stress in key climate sensitive biomes; 

2. Detect the timing, location, and predictive factors leading to plant water uptake decline 

and/or cessation over the diurnal cycle; and,  

3. Measure agricultural water consumptive use over the contiguous United States (CONUS) 

at spatiotemporal scales applicable to improve drought estimation accuracy. 

These science questions and objectives combine to form three core science hypotheses: 

 H1: The WUE of a climate hotspot is significantly lower than non-hotspots of the same 

biome type;  

 H2: Daily ET is overestimated when extrapolating from morning-only observations; and 

 H3: Remotely sensed ET measured at the field scale will improve drought prediction 

over managed ecosystems. 
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4 Theory and Methodology 

4.1 Thermal Infrared (TIR) Remote Sensing Background 

 The at-sensor measured radiance in the TIR spectral region (8–14 µm) is a combination of 

different terms from surface emission and the atmosphere. The Earth-emitted radiance is a function 

of temperature and emissivity and gets attenuated by the atmosphere on its path to the satellite. 

The emissivity of an isothermal, homogeneous emitter is defined as the ratio of the actual emitted 

radiance to the radiance emitted from a black body at the same thermodynamic temperature 

(Norman and Becker 1995),  𝜖𝜆= 𝑅𝜆/𝐵𝜆. The emissivity is an intrinsic property of the Earth’s 

surface and is an independent measurement of the surface temperature, which varies with 

irradiance and local atmospheric conditions. The emissivity of most natural Earth surfaces for the 

TIR wavelength ranges between 8 and 12 μm and, for a sensor with spatial scales <100 m, varies 

from ~0.7 to close to 1.0. Narrowband emissivities less than 0.85 are typical for most desert and 

semi-arid areas due to the strong quartz absorption feature (reststrahlen band) between the 8- and 

9.5-μm range, whereas the emissivity of vegetation, water, and ice cover are generally greater than 

0.95 and spectrally flat in the 8–12-μm  range. 

The atmosphere also emits radiation, of which some reaches the sensor directly as "path 

radiance," while some gets radiated to the surface (irradiance) and reflected back to the sensor, 

commonly  known as the reflected downwelling sky irradiance. One effect of the sky irradiance is 

the reduction of the spectral contrast of the emitted radiance, due to Kirchhoff's law. Assuming the 

spectral variation in emissivity is small (Lambertian assumption), and using Kirchhoff's law to 

express the hemispherical-directional reflectance as directional emissivity (𝜌𝜆 = 1 − 𝜖𝜆), the clear 

sky at-sensor radiance can be written as three terms: the Earth-emitted radiance described by 
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Planck's function and reduced by the emissivity factor,  𝜖𝜆; the reflected downwelling irradiance; 

and the path radiance.  

 𝐿𝜆(𝜃) = [𝜖𝜆𝐵𝜆(𝑇𝑠) +  (1 − 𝜖𝜆)𝐿𝜆
↓ ]𝜏𝜆(𝜃) + 𝐿𝜆

↑ (𝜃) (1)  

 

𝐿𝜆(𝜃) = at-sensor radiance; 

 𝜆       = wavelength;  

𝜃        = observation angle;  

𝜖𝜆       = surface emissivity;  

𝑇𝑠       = surface temperature;  

𝐿𝜆
↓        = downwelling sky irradiance;  

𝜏𝜆(𝜃)  = atmospheric transmittance;  

𝐿𝜆
↑ (𝜃)  = atmospheric path radiance 

𝐵𝜆(𝑇𝑠) = Planck function, described by Planck's law: 

 

𝐵𝜆 =
𝑐1

𝜋𝜆5
(

1

exp (
𝑐2

𝜆𝑇
) − 1

) (2)  

𝑐1 = 2𝜋ℎ𝑐2=3.74∙ 10−16 W∙m2 (1st radiation constant) 

h   = 6.63∙ 10−34 W∙s2 (Planck's constant) 

c2 = h∙c/k = 1.44× 104 µm∙K (2nd radiation constant) 

k   = 1.38× 10−23 W∙s∙K-1 (Boltzmann's constant) 

c   = 2.99∙ 108 m∙s-1 (speed of light) 

Figure 6 shows the relative contributions from the surface-emission term, surface radiance, 

and at-sensor radiance for a US Standard Atmosphere, quartz emissivity spectrum, and surface 
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temperature set to 300 K. Vertical bars show the placement of the eight ECOSTRESS MWIR and 

TIR bands. The reflected downwelling term adds a small contribution in the window regions but 

will become more significant for more humid atmospheres. The at-sensor radiance shows large 

departures from the surface radiance in regions where atmospheric absorption from gases such as 

CO2, H2O, and O3 are high. 

 

 

Figure 6: Radiance simulations of the surface-emitted radiance, surface-emitted and reflected radiance, and 

at-sensor radiance using the MODTRAN 5.2 radiative transfer code, US Standard Atmosphere, quartz 

emissivity spectrum, surface temperature = 300K, and viewing angle set to nadir. Vertical bars show 

placements of the HyspIRI MWIR and TIR bands and ECOSTRESS TIR bands. 
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 Equation (1) gives the at-sensor radiance for a single wavelength,𝜆, while the measurement 

from a sensor is typically measured over a range of wavelengths, or band. The at-sensor radiance 

for a discrete band, 𝑖, is obtained by weighting and normalizing the at-sensor spectral radiance 

calculated by equation (1) with the sensor's spectral response function for each band, 𝑆𝑟𝜆 , as 

follows: 

𝐿𝑖(𝜃) =
∫ 𝑆𝑟𝜆(i) ∙ 𝐿𝜆(𝜃) ∙ dλ 

𝑆𝑟𝜆(i) ∙ dλ
 (3)   

Using equations (1) and (2), the surface radiance for band 𝑖 can be written as a combination of two 

terms: Earth-emitted radiance, and reflected downward irradiance from the sky and surroundings: 

 

 
𝐿𝑠,𝑖 = 𝜖𝑖𝐵𝑖(𝑇𝑠) + (1 − 𝜖𝑖)𝐿𝑖

↓ =
𝐿𝑖(𝜃) − 𝐿𝑖

↑(𝜃)

𝜏𝑖(𝜃)
 

(4)  

 The atmospheric parameters, 𝐿𝜆
↓ , 𝜏𝜆(𝜃), 𝐿𝜆

↑ (𝜃) , are estimated with a radiative transfer 

model using input atmospheric fields of air temperature, relative humidity, and geopotential height.

  The approach for computing surface radiance is essentially a two-step process. First, the 

atmospheric state is characterized by obtaining atmospheric profiles of air temperature, water 

vapor, geopotential height, and ozone at the observation time and location of the measurement. 

Ideally the profiles should be obtained from a validated, mature product with sufficient spatial 

resolution and close enough in time with the ECOSTRESS observation to avoid interpolation 

errors. This is particularly important for the temperature and water profiles to ensure good 

accuracy. Absorption from other gas species such as CH4, CO, and N2O will not be significant for 

the placement of the ECOSTRESS TIR bands. The second step is to input the atmospheric profiles 

to a radiative transfer model to estimate the atmospheric parameters defined previously. This 

method will be used on clear-sky pixels only, which will be classified using a cloud mask 
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specifically tailored for ECOSTRESS data. Clouds result in strong attenuation of the thermal 

infrared signal reaching the sensor, and an attempt to correct for this attenuation will not be made. 

4.2  Radiative Transfer Model 

 Two radiative transfer (RT) models are described next - MODTRAN and RTTOV. For 

ECOSTRESS we will require a very fast model due to the high spatial resolution of the data and 

therefore RTTOV will be the first RT model of choice, however, MODTRAN will be used as a 

backup and is therefore also presented here. 

4.2.1 MODTRAN 

 The latest version of the Moderate Resolution Atmospheric Radiance and Transmittance 

Model (MODTRAN) (Berk et al. 2005) is v5.2. MODTRAN has been sufficiently tested and 

validated and meets the speed requirements necessary for high spatial resolution data processing. 

The most recent MODTRAN 5.2 uses an improved molecular band model, termed the Spectrally 

Enhanced Resolution MODTRAN (SERTRAN), which has a much finer spectroscopy (0.1 cm-1) 

than its predecessors (1-2 cm-1),  resulting in more accurate modeling of band absorption features 

in the longwave TIR window regions (Berk et al. 2005). Furthermore, validation with Line-by-

Line models (LBL) has shown good accuracy. 

 Older versions of MODTRAN, such as version 3.5 and 4.0, have been used extensively in 

the past few decades for processing multi-band and broadband TIR and short-wave/visible imaging 

sensors such as ASTER data on NASA's Terra satellite. Earlier predecessors, such as MODTRAN 

3.5, used a molecular band model with 2 cm-1 resolution and traced their heritage back to previous 

versions of LOWTRAN (Berk 1989; Kneizys et al. 1996). With the next generation’s state-of-the-

art, mid- and longwave IR hyperspectral sensors due for launch in the next decade, there has been 

greater demand for higher resolution and quality radiative transfer modeling. MODTRAN 5.2 has 
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been developed to meet this demand by reformulating the MODTRAN molecular band model line 

center and tail absorption algorithms. Further improvements include the auxiliary species option, 

which simulates the effects of HITRAN-specific trace molecular gases and a new multiple 

scattering option, which improves the accuracy of radiances in transparent window regions. Wan 

and Li (2008) have compared MODTRAN 4 simulations with clear-sky radiances from a well-

calibrated, advanced Bomem TIR interferometer (MR100) and found accuracies to within 0.1 K 

for brightness temperature-equivalent radiance values. 

4.2.2 RTTOV 

 The Radiative Transfer for TOVS (RTTOV)  is a very fast radiative transfer model for 

nadir-viewing passive visible, infrared and microwave satellite radiometers, spectrometers and 

interferometers (Saunders et al. 1999). RTOV is a FORTRAN-90 code for simulating satellite 

radiances, designed to be incorporated within users' applications.  RTTOV was originally 

developed at ECMWF in the early 90's for TOVS (Eyre and Woolf 1988). Subsequently the 

original code has gone through several developments (Matricardi et al. 2001; Saunders et al. 1999), 

more recently within the EUMETSAT NWP Satellite Application Facility (SAF), of which 

RTTOV v11 is the latest version.  It is actively developed by ECMWF and UKMET.  

 A number of satellite sensors are supported from various platforms 

(https://nwpsaf.eu/deliverables/rtm/rttov_description.html). RTTOV has been sufficiently tested 

and validated and is conveniently fast for full scale retrievals (Matricardi 2009).  Given an 

atmospheric profile of temperature, water vapor and optionally other trace gases (for example 

ozone and carbon dioxide) together with satellite and solar zenith angles and surface temperature, 

pressure and optionally surface emissivity and reflectance, RTTOV will compute the top of 

https://nwpsaf.eu/deliverables/rtm/rttov_description.html
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atmosphere radiances in each of the channels of the sensor being simulated. Users can also specify 

the selected channels to be simulated.  

 Mathematically, in vector notation, given a state vector, x, which describes the 

atmospheric/surface state as a profile and surface variables the radiance vector, y, for all the 

channels required to be simulated is given by (Saunders et al. 1999): 

 y = H(x) (5)  

where H is the radiative transfer model, i.e. RTTOV (also referred to as the observation operator 

in data assimilation parlance). This is known as the 'direct' or 'forward' model. 

An important feature of the RTTOV model is that it not only performs the fast computation of the 

forward (or direct) clear-sky radiances but also the fast computation of the gradient of the radiances 

with respect to the state vector variables for the input state vector values.   The Jacobian 

matrix H which gives the change in radiance δy for a change in any element of the state 

vector δx assuming a linear relationship about a given atmospheric state x0: 

 δy = H(x0)δx (6)  

The elements of H contain the partial derivatives 
𝜕𝑦𝑖

𝜕𝑥𝑗
(

𝑑𝑦𝑖

𝑑𝑥𝑗
) where the subscript i refers to channel 

number and j to position in state vector. The Jacobian gives the top of atmosphere radiance change 

for each channel from each level in the profile given a unit perturbation at any level of the profile 

vectors or in any of the surface/cloud parameters. It shows clearly, for a given profile, which levels 

in the atmosphere are most sensitive to changes in temperature and variable gas concentrations for 

each channel.  

 In RTTOV the transmittances of the atmospheric gases are expressed as a function of 

profile dependent predictors. This parameterization of the transmittances makes the model 
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computationally efficient.  The RTTOV fast transmittance scheme uses regression coefficients 

derived from accurate Line by Line computations to express the optical depths as a linear 

combination of profile dependent predictors that are functions of temperature, absorber amount, 

pressure and viewing angle (Matricardi and Saunders 1999). The regression coefficients are 

computed using a training set of diverse atmospheric profiles chosen to represent the range of 

variations in temperature and absorber amount found in the atmosphere (Chevallier 2000; 

Matricardi 2008, 2009; Matricardi and Saunders 1999).  The selection of the predictors is made 

according to the coefficients file supplied to the program. 

4.3 Atmospheric Profile Data 

 

 The general methodology for atmospherically correcting ECOSTRESS TIR data will be 

based on the methods that were developed for the ASTER (Palluconi et al. 1999) and MODIS 

approaches (Hulley et al. 2012a). However, adjustments will be made by taking advantage of 

improved interpolation techniques and higher resolution Numerical Weather Prediction (NWP) 

model data.   

Currently two options for atmospheric profile sources are available: 1) interpolation of data 

assimilated from NWP models, and 2) retrieved atmospheric geophysical profiles from remote-

sensing data. The NWP models use current weather conditions, observed from various sources 

(e.g., radiosondes, surface observations, and weather satellites) as input to dynamic mathematical 

models of the atmosphere to predict the weather. Data are typically output in 6-hour increments, 

e.g., 00, 06, 12, and 18 UTC. Examples include the Global Data Assimilation System (GDAS) 

product provided by the National Centers for Environmental Prediction (NCEP) 
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Figure 7: Example profiles of Relative Humidity (RH) and Air Temperature from the NCEP GDAS product.  

 (Kalnay et al. 1990), the Modern Era Retrospective-analysis for Research and Applications 

(MERRA-2) product provided by the Goddard Earth Observing System Data Assimilation System 

Version 5.2.0 (GEOS-5.2.0) (Bosilovich et al. 2008), GEOS-5 FP Atmospheric Data Assimilation 

System (GEOS-5 ADAS), and the European Center for Medium-Range Weather Forecasting 

(ECMWF), which is supported by more than 32 European states. Remote-sensing data, on the 

other hand, are available real-time, typically twice-daily and for clear-sky conditions. The 

principles of inverse theory are used to estimate a geophysical state (e.g., atmospheric temperature) 

by measuring the spectral emission and absorption of some known chemical species such as carbon 

dioxide in the thermal infrared region of the electromagnetic spectrum (i.e. the observation). 

Examples of current remote sensing data include the Atmospheric Infrared Sounder (AIRS) 

(Susskind et al. 2003) and Moderate Resolution Imaging Spectroradiometer (MODIS) (Justice and 

Townshend 2002), both on NASA's Aqua satellite launched in 2002.  

 ECOSTRESS will make measurements from the ISS at different times of day for any given 

location, and so the only feasible way to atmospherically correct the data at a given observation 

hour is to interpolate in space and time from NWP data. Interpolation from remote sensing data 

such as the MODIS joint atmospheric Level-2 product, MOD07  
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(Seemann et al. 2003) would be more complicated since two different products (Aqua/Terra) 

would have to be merged and geolocated with the ECOSTRESS observation in order to sample 

the diurnal cycle four times daily at the 10:30 am/pm (Terra) and 1:30 am/pm (Aqua) observations. 

 NWP data options available for ECOSTRESS included the MERRA-2 and GEOS5 

reanalyses products produced by the NASA Global Modeling and Assimilation Office (GMAO) 

and also ECMWF analysis and NCEP GDAS data. After investigating the options availablewe 

decided to use GEOS5-FP data since it provided the highest spatial (1/4 degree) and temporal (3 

hourly) resolution and is provided in near real-time for end users. MERRA-2 data has a one month 

latency which would have complicated the processing system dynamics at the JPL science data 

system, while ECMWF data required complex licensing agreements. The GEOS-5 FP 

Atmospheric Data Assimilation System (GEOS-5 ADAS) uses an analysis developed jointly with 

NOAA’s National Centers for Environmental Prediction (NCEP), which allows the Global 

Modeling and Assimilation Office (GMAO) to take advantage of the developments at NCEP and 

the Joint Center for Satellite Data Assimilation (JCSDA) (Lucchesi 2017). 

The atmospheric profiles are first interpolated in time to the ECOSTRESS observation using 

the [00 03 06 09 12 15 18 21] analysis observation hours using a constrained quadratic function as 

discussed in the following section. The GEOS5 data is then gridded to the ECOSTRESS swath 

resolution using a bicubic interpolation approach. The SRTM Digital Elevation Model (DEM) 

available in the ECOSTRESS L1B_GEO product is used to crop the profiles at the appropriate 

levels for each ECOSTRESS pixel at native resolution.  
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Table 3: Geophysical data available in the GEOS5-FP analyses product. Columns under Mandatory specify if 

the variables is needed for determining atmospheric correction parameters. 

GEOS5-FP Analyses Data (inst3_3d_asm_Np) 

Geophysical fields Mandatory 

for RTTOV? 

Available in 

GEOS5? 

Remarks 

time Time Yes Yes  

lat Latitude Yes Yes  

lon Longitude Yes Yes  

lev Pressure Yes Yes  

T Air Temperature Yes Yes  

QV Specific Humidty Yes Yes Specific humidity is 

converted into ppmv 

for intput to RTTOV 

PS Surface Pressure Yes Yes  

skt Skin Temperature Yes No T value at the first 

valid level above 

surface is used 

t2 Temperature at 2 m Yes No T value at the first 

valid level above 

surface is used 

q2 Specific Humidty at 2 m Yes No Q value at the first 

valid level above 

surface is used 

lsm Land Sea Mask Yes No Auxiliary database 

ECOSTRESS L1A 

GEO Data 

el Elevation Yes No Auxiliary database 

ECOSTRESS L1A 

GEO Data 

tcw Total Column Water No No But calculated 

internally from QV 

levels, and used for 

L2 uncertainty 

estimation. 

Resolution 

Frequency: 3 hr analysis from 00:00 UTC 

Spatial: 3D Grid, 1/4 degree in latitude × 5/16 degree in longitude 

Dimensions: 1152 (longitude) x 721 (latitude), 42 pressure levels 

Granule size: 558 MB 
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4.3.1 Profile Temporal Interpolation 

 

 The diurnal cycle of near surface air temperature oscillates almost sinusoidally between a 

minimum at sunrise and a maximum in the afternoon. This occurs primarily because the 

atmosphere is relatively transparent to the shortwave radiation from the sun and relatively opaque 

to the thermal radiation from the Earth and as a result the surface is warmed by a positive daytime 

net radiation, and cooled by a negative nighttime radiation balance (radiative cooling). The net 

radiation determines whether the temperature rises, falls, or remains constant. The peak in daily 

temperature generally occurs in the afternoon as the air continues to warm due to a positive net 

radiation that persists for a few hours after noon (temperature lag). Similarly, minimum daily 

temperatures generally occur substantially after midnight, and sometimes during early morning 

hours around dawn, since heat is lost all night long. This effect can be seen in Figure 8 which 

shows air temperature (left panels) and relative humidity (right panels) data from the NCEP GDAS 

product over Los Angeles, CA for the 0, 6, 12, 18 UTC and 0 UTC on the following day. The air 

temperature diurnal cycle near the surface (1000 mb) shows a maximum temperature around 5 pm 

local time (12 pm UTC) during the summertime (1 August 2004), and a minimum at 4 am local 

(12 am UTC). A quadratic fit (red line) to the 5 data points captures the sinusoidal diurnal pattern 

quite well with maximum difference of ~1 K from the linear fit (black line). The maximum diurnal 

variation at 1000 mb for this particular day was ~ 7 K, decreasing to ~1 K above the boundary 

layer (850 mb), and on the order of a few degrees in the troposphere (250 mb). This indicates that 

a linear fit might be good enough above the boundary layer.  

 This is particularly evident for the relative humidity (RH) diurnal cycle, where large 

differences can be seen between the linear and quadratic fits at 250 mb due to a double inflection 

point. RH is the amount of moisture in the air compared to what the air can "hold" at that 
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temperature and is generally calculated in relation to saturated water vapor density. When the air 

can't "hold" all the moisture, then it condenses as dew. Because of this the diurnal variation in RH 

is approximately inverse to that of temperature. At about sunrise the RH is typically at a maximum 

and reaches a minimum in the afternoon hours. The annual variation of RH is largely depends 

upon the locality. At regions where the rainy season is in summer and winter is dry, the maximum 

RH occurs in summer and minimum in winter and at other regions maximum RH occurs in winter. 

Over oceans the RH reaches a maximum during the summertime. 
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Figure 8: An example showing temporal interpolation of air temperature (left panels) and relative humidity 

(right panels) data from the NCEP GDAS product over Los Angeles, CA at different atmospheric levels from 

surface to the stratosphere. A linear and a constrained quadratic fit is used for data at 0, 6, 12, 18 UTC and 0 

UTC on the following day. The results indicate that a quadratic fit is optimal for fitting air temperature data 

in the boundary layer and mid-troposphere, but that a linear fit is more representative at higher levels. This 

is also true for the relative humidity. 
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4.3.2 Profile Vertical and Horizontal Interpolation 

 

A study has been conducted to develop and test different interpolation schemes using NWP 

data and evaluate their impact on the retrieved LST (Cook 2014). The methodologies have been 

developed and tested using only the NCEP North American Regional Reanalysis (NARR) data set 

defined over North America only (Mesinger et al. 2006). These methodologies will be adapted and 

used for interpolation of GEOS5 data required by ECOSTRESS. The approach generates the 

radiative transfer parameters, 𝜏𝜆, 𝐿𝜆
↓  , and 𝐿𝜆

↑  (Eq. 1) at each elevation for each model grid point 

for the scene. Generating the radiative transfer parameters at a set of elevations at each grid point 

results in a three- dimensional (spatial and height) cube of data encompassing the entire scene. The 

radiative transfer parameters are linearly interpolated to the appropriate elevation at each of the 

model grid points, illustrated in Figure 9a, and these resulting parameters are interpolated to the 

appropriate pixel locations using Shepard’s inverse distance interpolation method, illustrated in 

Figure 9b. 

(a) 

 

(b) 

 

Figure 9: a) Illustration of interpolation in elevation. The black circles represent elevations at which the NWP 

profiles are defined. b) Illustration of spatial interpolation. The grid represents the layout of the pixels and the 

black circles the NWP points (not to scale). The radiative transfer parameters values at the four pertinent NWP 

points are interpolated to the location of the current pixel, represented by the gray circle. 
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4.4 Radiative Transfer Sensitivity Analysis 

 The accuracy of the atmospheric correction technique proposed relies on the accuracy of 

the input variables to the model, such as air temperature, relative humidity, and ozone. The 

combined uncertainties of these input variables need to be known if an estimate of the radiative 

transfer accuracy is to be estimated. These errors can be band dependent, since different channels 

have different absorbing features and they are also dependent on absolute accuracy of the input 

profile data at different levels. The final uncertainty introduced is the accuracy of the radiative 

transfer model itself; however, this is expected to be small.  

 To perform the analysis, four primary input geophysical parameters were input to 

MODTRAN 5.2, and each parameter was changed sequentially in order to estimate the 

corresponding percent change in radiance (Palluconi et al. 1999). These geophysical parameters 

were air temperature, relative humidity, ozone, and aerosol visibility. Two different atmospheres 

were chosen, a standard tropical atmosphere and a mid-latitude summer atmosphere. These two 

simulated atmospheres should capture realistic errors we expect to see in humid conditions. 

 Typical values for current infrared sounder accuracies (e.g., AIRS) of air temperature and 

relative humidity retrievals in the boundary layer were used for the perturbations: 1) air 

temperature of 2 K,  2) relative humidity of 20%, 3) ozone was doubled, and 3) aerosol visibility 

was changed from rural to urban class. Numerical weather models such as NCEP would most 

likely have larger uncertainties in the 1–2 K range for air temperature and 10–20% for relative 

humidity (Kalnay et al. 1990), but it is expected that infrared sounder retrievals will be available 

for the atmospheric correction during the ECOSTRESS mission, for example NOAA's Joint Polar 

Satellite System (JPSS), which will launch sometime in the 2015–2018 timeframe.  
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 Table 5 shows the results for three simulated ECOSTRESS bands 1, 3 and 4, expressed as 

percent change in radiance. ECOSTRESS-TIR Bands 1 and 3 correspond to band-integrated values 

for ASTER bands 10 and 12, and ECOSTRESS-TIR band 4 corresponds to MODIS band 31. 

Figure 6 shows that band 3 falls closest to the strong water vapor absorption region below about 8 

µm, so we expect this band to be most sensitive to changes in atmospheric water vapor, and to a 

lesser extent the air temperature. The results show that band 3 is in fact most sensitive to 

perturbations in relative humidity. The temperature perturbations have similar effects for bands 3 

and 5 for both atmospheres and are lower for band 7. Doubling the ozone results in a much larger 

sensitivity for band 5, since it is closest to the strong ozone absorption feature centered around the 

9.5-µm region as shown in Figure 6. Changing the aerosol visibility from rural to urban had a small 

effect on each band but was largest for band 5. Generally the radiance in the thermal infrared 

region is insensitive to aerosols in the troposphere so, for the most part, a climatology-based 

estimate of aerosols would be sufficient. However, when stratospheric aerosol amounts increase 

substantially due to volcanic eruptions, for example, then aerosols amounts from future NASA 

remote-sensing missions such as ACE and GEO-CAPE would need to be taken into account.   

 It should also be noted, as discussed in Palluconi et al. (1999), that in reality these types of 

errors may have different signs, change with altitude, and/or have cross-cancelation between the 

parameters. As a result, it is difficult to quantify the exact error budget for the radiative transfer 

calculation; however, what we do know is that the challenging cases will involve warm and humid 

atmospheres where distributions of atmospheric water vapor are the most uncertain.  
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Table 4: Percent changes in simulated ECOSTRESS at-sensor radiances for changes in input geophysical 

parameters, with equivalent change in brightness temperature in parentheses.  

Geophysical 

Parameter 

Change in 

Parameter 

% Change in Radiance 

(Tropical Atmosphere) 

% Change in Radiance 

(Mid-lat Summer Atmosphere) 

  
Band 1 

(8.3 µm) 

Band 3 

(9.1 µm) 

Band 4 

(11 µm) 

Band 1 

(8.3 µm) 

Band 3 

(9.1 µm) 

Band 4 

(11 µm) 

Air Temperature +2 K 
-2.72 

(1.32 K) 

-2.86 

(1.56 K) 

-2.07 

(1.40 K) 

-3.16 

(1.50 K) 

-3.25 

(1.72 K) 

-2.54 

(1.68 K) 

Relative Humidity +20% 
3.1 

(1.94 K) 

1.91 

(1.06 K) 

2.26 

(1.55 K) 

2.88 

(1.39 K) 

1.03 

(0.55 K) 

0.83 

(0.56 K) 

Ozone × 2 
0.10 

(0.05 K) 

2.18 

(1.19 K) 

0.00 

(0.00 K) 

0.11 

(0.05 K) 

1.12 

(1.11 K) 

0.00 

(0.00 K) 

Aerosol Urban/Rural 
0.33 

(0.16 K) 

0.51 

(0.28 K) 

0.27 

(0.18 K) 

0.33 

(0.16 K) 

0.53 

(0.28 K) 

0.29 

(0.19 K) 

 

4.5 Temperature and Emissivity Separation Approaches 

 The radiance in the TIR atmospheric window (8–13 µm) is dependent on the temperature 

and emissivity of the surface being observed. Even if the atmospheric properties (water vapor and 

air temperature) are well known and can be removed from equation (1), the problem of retrieving 

surface temperature and emissivity from multispectral measurements is still a non-deterministic 

process. This is because the total number of measurements available (N bands) is always less than 

the number of variables to be solved for (emissivity in N bands and one surface temperature). 

Therefore, no retrieval will ever do a perfect job of separation, with the consequence that errors in 

temperature and emissivity may co-vary. If the surface can be approximated as Lambertian 

(isotropic) and the emissivity is assigned a priori from a land cover classification, then the problem 

becomes deterministic with only the surface temperature being the unknown variable. Examples 

of such cases would be over ocean, ice, or densely vegetated scenes where the emissivity is known 

and spectrally flat in all bands. Another deterministic approach is the single-band inversion 
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approach. If the atmospheric parameters are known in equation (1), then the temperature can also 

be solved for using a single band, usually in the clearest region of the window (~11 µm). 

Deterministic approaches are usually employed with sensors that have two or three bands in the 

TIR region, while non-deterministic approaches are applied to multispectral sensors so that 

spectral variations in the retrieved emissivity can be related to surface composition and cover, in 

addition to retrieving the surface temperature. For ECOSTRESS, a non-deterministic approach 

will be used, as spectral emissivity will need to be determined physically, along with temperature, 

in order to help answer the science questions outlined previously in section 3. 

4.5.1 Deterministic Approaches 

4.5.1.1 Split-window Algorithms 

 The most common deterministic approach can be employed without having to explicitly 

solve the radiative transfer equation. Two or more bands are employed in the window region 

(typically 10.5–12 µm), and atmospheric effects are compensated for by the differential absorption 

characteristics from the two bands. This approach is used with much success over oceans to 

compute the SST (Brown and Minnett 1999), as the emissivity of water is well known (Masuda et 

al. 1988).  Variations of this method over land include the split-window (SW) approach (Coll and 

Caselles 1997; Prata 1994; Price 1984; Wan and Dozier 1996; Yu et al. 2008), the multichannel 

algorithm (Deschamps and Phulpin 1980), and the dual-angle algorithm (Barton et al. 1989). Over 

land, the assumption is that emissivities in the split-window bands being used are stable and well 

known and can be assigned using a land cover classification map (Snyder et al. 1998). However, 

this assumption introduces large errors over barren surfaces where much larger variations in 

emissivity are found due to the presence of large amounts of exposed rock or soil often with 

abundant silicates (Hulley and Hook 2009a). Land cover classification maps typically use VNIR 
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data for assignment of various classes. This method may work for most vegetation types and over 

water surfaces but, because VNIR reflectances correspond predominately to Fe oxides and OH- 

and not to the Si-O bond over barren areas, there is little or no correlation with silicate mineralogy 

features in thermal infrared data. This is why, in most classification maps, only one bare land class 

is specified (barren). This type of approach will not be used for the ECOSTRESS standard 

algorithm for the following reasons:  

1. The emissivity of the land surface is in general heterogeneous and is dependent on many factors 

including surface soil moisture, vegetation cover changes, and surface compositional changes, 

which are not characterized by classification maps.  

2. Split-window algorithms are inherently very sensitive to measurement noise between bands. 

3. Classification leads to sharp discontinuities and contours in the data between different class 

types. This violates one of the goals of ECOSTRESS in producing seamless images.  

4. Temperature inaccuracies are difficult to quantify over geologic surfaces where constant 

emissivities are assigned. 

4.5.1.2 Single-band Inversion 

 If the atmosphere is known, along with an estimate of the emissivity, then equation (1) can 

be inverted to retrieve the surface temperature using one band. Theoretically, any band used should 

retrieve the same temperature, but uncertainties in the atmospheric correction will result in subtle 

differences as different bands have stronger atmospheric absorption features than others which 

may be imperfectly corrected for atmospheric absorption. For example, a band near 8 µm will have 

larger dependence on water vapor, while the 9–10-µm region will be more susceptible to ozone 

absorption. Jimenez-Munoz and Sobrino (2010) applied this method to ASTER data by using 

atmospheric functions (AFs) to account for atmospheric effects. The AFs can be computed by the 
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radiative transfer equation or empirically given the total water vapor content.  The clearest ASTER 

band (13 or 14) was used to retrieve the temperature, with the emissivity determined using an 

NDVI fractional vegetation cover approach. A similar procedure has been proposed to retrieve 

temperatures from the Landsat TIR band 6 on ETM+ and TM sensors (Li et al. 2004). The single-

band inversion method will not be used for ECOSTRESS for the following reasons: 

1. One of the goals of ECOSTRESS science will be to retrieve the spectral emissivity of geologic 

surfaces for compositional analysis. This will not be possible with the single-band approach, 

which assigns emissivity based on land cover type and vegetation fraction. 

2. Estimating emissivity from NDVI-derived vegetation cover fraction over arid and semi-arid 

regions will introduce errors in the LST because NDVI is responsive only to chlorophyll active 

vegetation, and does not correlate well with senescent vegetation (e.g., shrublands). 

3. Only one-band emissivity is solved for the single-band inversion approach. ECOSTRESS will 

be a multispectral retrieval approach. 

4.5.2 Non-deterministic Approaches 

 In non-deterministic approaches, the temperature and emissivity is solved using an 

additional constraint or extra degree of freedom that is independent of the data source. These types 

of solutions are also rarely perfect because the additional constraint will always introduce an 

additional level of uncertainty, however, they work well over all surfaces (including arid and semi 

arid) and can automatically account for changes in the surface e.g. due to fire or moisture. First, 

we introduce two well-known approaches, the day/night and TISI algorithms, followed by an 

examination of the algorithms and methods that led up to establishment of the TES algorithm. 
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4.5.2.1 Day/Night Algorithm 

 The constraint in the day/night algorithm capitalizes on the fact that the emissivity is an 

intrinsic property of the surface and should not change from day- to nighttime observations. The 

day/night algorithm is currently used to retrieve temperature/emissivity from MODIS data in the 

MOD11B1 product (Wan and Li 1997). The method relies on two measurements (day and night), 

and the theory is as follows: Two observations in N bands produces 2N observations, with the 

unknown variables being N-band emissivities, a day- and nighttime surface temperature, four 

atmospheric variables (day and night air temperature and water vapor), and an anisotropic factor, 

giving N + 7 variables. In order to make the problem deterministic, the following conditions must 

be met: 2N≥N+7, or N≥7. For the MODIS algorithm, this can be satisfied by using bands 20, 22, 

23, 29, 31–33. Although this method is theoretically sound, the retrieval is complicated by the fact 

that two clear, independent observations are needed (preferably close in time) and the pixels from 

day and night should be perfectly co-registered. Errors may be introduced when the emissivity 

changes from day to night observation (e.g., due to condensation or dew), and from undetected 

nighttime cloud. In addition, the method relies on very precise co-registration between the day- 

and nighttime pixel.  

4.5.2.2 Temperature Emissivity Separation Approaches 

 During research activities leading up to the ASTER mission, the ASTER Temperature 

Emissivity Working Group (TEWG) was established in order to examine the performance of 

existing non-deterministic algorithms and select one suitable for retrieving the most accurate 

temperature and/or emissivity over the entire range of terrestrial surfaces. This lead to development 

of the TES algorithm, which ended up being a hybrid algorithm that capitalized on the strengths 

of previous algorithms. In Gillespie et al. (1999), ten inversion algorithms were outlined and tested, 
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leading up to development of TES. For all ten algorithms, an independent atmospheric correction 

was necessary. The ten algorithms were as follows:  

1. Alpha-derived emissivity (ADE) method 

2. Classification method 

3. Day-Night measurement 

4. Emissivity bounds method 

5. Graybody emissivity method 

6. Mean-MMD method (MMD) 

7. Model emissivity method 

8. Normalized emissivity method (NEM) 

9. Ratio Algorithm 

10. Split-window algorithm 

 In this document, we will briefly discuss a few of the algorithms but will not expand upon 

any of them in great detail. The day-night measurement (3), classification (2), and split-window 

(10) algorithms have already been discussed in section 4.2.1.  A detailed description of all ten 

algorithms is available in Gillespie et al. (1999). The various constraints proposed in these 

algorithms either determine spectral shape but not temperature, use multiple observations (day and 

night), assume a value for emissivity and calculate temperature, assume a spectral shape, or assume 

a relationship between spectral shape and minimum emissivity.  

 The normalized emissivity method (NEM) removes the downwelling sky irradiance 

component by assuming an 𝜖𝑚𝑎𝑥 of 0.99. Temperature is then estimated by inverting the Planck 

function and a new emissivity found. This process is repeated until successive changes in the 



ECOSTRESS LEVEL-2 ATBD  

36 

estimated surface radiances are small. This method in itself was not found to be suitable for 

ASTER because temperature inaccuracies tended to be high (>3 K) and the emissivities had 

incorrect spectral shapes. Other approaches have used a model to estimate emissivity at one 

wavelength (Lyon 1965) or required that the emissivity be the same at two wavelengths (Barducci 

and Pippi 1996). This introduces problems for multispectral data with more than 5 bands, e.g., 

ASTER or ECOSTRESS.  

 The ADE method (Hook et al. 1992; Kealy et al. 1990; Kealy and Hook 1993) is based on 

the alpha residual method that preserves emissivity spectral shape but not amplitude or 

temperature. The constraint introduced uses an empirical relationship between spectral contrast 

and average emissivity to restore the amplitude of the alpha-residual spectrum and to compute 

temperature. The average emissivity was used in the relationship to minimize band-to-band 

calibration errors. The TEWG used this key feature of the ADE method in TES, although the 

minimum emissivity instead of average emissivity was used in the empirical relationship 

(Matsunaga 1994). The ADE itself was not fully employed for two primary reasons as discussed 

in Gillespie et al. (1999): 1) ADE uses Wien's approximation, exp(x) - 1 = exp(x), which introduces 

a noticeable "tilt" in the residual spectra that gets transferred to the final emissivity spectra; and 2) 

This issue was easily fixed in the hybrid version of TES. 

 Lastly, the temperature-independent spectral indices (TISI) approach (Becker and Li 1990) 

computes relative emissivities from power-scaled brightness temperatures. TISI, however, is band-

dependent and only recovers spectral shape; furthermore, the values are non unique. To retrieve 

actual emissivities, additional information or assumptions are needed. Other algorithms, which 

only retrieve spectral shape, are the thermal log and alpha residual approach (Hook et al. 1992) 
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and spectral emissivity ratios (Watson 1992; Watson et al. 1990). Neither of these were considered 

because they do not recover temperature or actual emissivity values. 

 

5 Temperature Emissivity Separation (TES) Algorithm 

 

 The final TES algorithm proposed by the ASTER TEWG combined some core features 

from previous algorithms and, at the same time, improved on them. TES combines the NEM, the 

ratio, and the minimum-maximum difference (MMD) algorithm to retrieve temperature and a full 

emissivity spectrum. The NEM algorithm is used to estimate temperature and iteratively remove 

the sky irradiance, from which an emissivity spectrum is calculated, and then ratioed to their mean 

value in the ratio algorithm. At this point, only the shape of the emissivity spectrum is preserved, 

but not the amplitude. In order to compute an accurate temperature, the correct amplitude is then 

found by relating the minimum emissivity to the spectral contrast (MMD). Once the correct 

emissivities are found, a final temperature can be calculated with the maximum emissivity value. 

Additional improvements involve a refinement of 𝜖𝑚𝑎𝑥  in the NEM module and refining the 

correction for sky irradiance using the 𝜀𝑚𝑖𝑛 -MMD final emissivity and temperature values. 

Finally, a quality assurance (QA) data image is produced that partly depends on outputs from TES 

such as convergence, final 𝜖𝑚𝑎𝑥, atmospheric humidity, and proximity to clouds. More detailed 

discussion of QA is included later in this document. 

 Numerical modeling studies performed by the ASTER TEWG showed that TES can 

recover temperatures to within 1.5 K and emissivities to within 0.015 over most scenes, assuming 

well calibrated, accurate radiometric measurements (Gillespie et al. 1998). 
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5.1 Data Inputs 
 

 Inputs to the TES algorithm are the surface radiance, 𝐿𝑠,𝑖, given by equation (4) (at-sensor 

radiance corrected for transmittance and path radiance), and downwelling sky irradiance term, 𝐿𝜆
↓  

, which is computed from the atmospheric correction algorithm using a radiative 

transfer model such as MODTRAN. Both the surface radiance and sky irradiance will be output 

as a separate product. The surface radiance is primarily used as a diagnostic tool for monitoring 

changes in Earth's surface composition. Before the surface radiance is estimated using equation 

(4), the accuracy of the atmospheric parameters, 𝐿𝜆
↓ , 𝜏𝜆(𝜃), 𝐿𝜆

↑ (𝜃), is improved upon using a water 

vapor scaling (WVS) method (Tonooka 2005) on a band-by-band basis for each observation using 

an extended multi-channel/water vapor dependent (EMC/WVD) algorithm (for more details, see 

ECOSTRESS Surface Radiance ATBD). 

5.2 TES Limitations 

 As with any retrieval algorithm, limitations exist that depend on measurement accuracy, 

model errors, and incomplete characterization of atmospheric effects. The largest source of 

inaccuracy currently for ASTER data is the residual effect of incomplete atmospheric correction. 

Measurement accuracy and precision contribute to less of a degree. This problem is compounded 

for graybodies, which have low spectral contrast and are therefore more prone to errors in 

"apparent" MMD, which is overestimated due to residual sensor noise and incomplete atmospheric 

correction. A threshold classifier was introduced by the TEWG to partly solve this problem over 

graybody surfaces. Instead of using the calibration curve to estimate 𝜀𝑚𝑖𝑛 from MMD, a value of 

𝜀𝑚𝑖𝑛= 0.983 was automatically assigned when the spectral contrast or MMD in emissivity was 

smaller than 0.03 for graybody surfaces (e.g., water, vegetation). However, this caused artificial 

step discontinuities in emissivity between vegetated and arid areas.  
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 At the request of users, two parameter changes were made to the ASTER TES algorithm 

on August 1, 2007, first described in Gustafson et al. (2006). Firstly, the threshold classifier was 

removed as it caused contours and artificial boundaries in the images that users could not tolerate 

in their analysis. The consequence of removing the threshold classifier was a smoother appearance 

for all images but at the cost of TES underestimating the emissivity of graybody scenes, such as 

water by up to 3% and vegetation by up to 2% (Hulley et al. 2008). The second parameter change 

removed the iterative correction for reflected downwelling radiation, which also frequently failed 

due to inaccurate atmospheric corrections (Gustafson et al. 2006). Using only the first iteration 

resulted in improved spectral shape and performance of TES.   

5.3 TES Processing Flow 

 Figure 10 shows the processing flow diagram for the generation of the cloud masks, land-

leaving radiance, VNIR reflectances, and TES temperature and emissivity, while Figure 11 shows 

a more detailed processing flow of the TES algorithm itself. Each of the steps will be presented in 

sufficient detail in the following section, allowing users to regenerate the code. TES uses input 

image data of surface radiance, 𝐿𝑠,𝑖, and sky irradiance, 𝐿𝜆
↓ , to solve the TIR radiative transfer 

equation. The output images will consists of six emissivity images ( 𝜖𝑖 ) corresponding to 

ECOSTRESS bands 3–8 and one surface temperature image (T).  
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Figure 10. Flow diagram showing all steps in the retrieval process in generating the ECOSTRESS land surface 

temperature and emissivity product starting with thermal infrared (TIR) at-sensor radiances and progressing 

through atmospheric correction, cloud detection, and the temperature emissivity separation (TES) algorithm.  

  

Cloud Detection 

Algorithm

• Cloud mask

• Smoke mask

• NDVI
• VNIR reflectance

Atmospheric 

Correction 

Module

• Land-leaving TIR    

Radiance

• Downwelling sky 
irradiance

Atmospheric 

Profiles

TES algorithm

NEM

Module

RATIO 

Module

MMD

Module

QA

Module

DEM

Output: Emissivity 

and Temperature 

TIR at-sensor 

Radiance

VNIR/SWIR/TIR 

at-sensor Radiance



ECOSTRESS LEVEL-2 ATBD  

41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11. Flow diagram of the temperature emissivity separation (TES) algorithm in its entirety, including the 
NEM, RATIO and MMD modules. Details are included in the text, including information about the refinement 
of 𝝐𝒎𝒂𝒙. 
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5.4 NEM Module 

 The normalized emissivity method (NEM) builds upon the model emissivity algorithm 

(Lyon 1965) by allowing the initial 𝜖𝑚𝑎𝑥 value to be consistent for all wavelengths. The role of 

NEM is to compute the surface kinetic temperature, T, and a correct shape for the emissivity 

spectrum. An initial value of 0.99 is set for 𝜖𝑚𝑎𝑥, which is typical for most vegetated surfaces, 

snow, and water. For geologic materials such as rocks and sand, 𝜖𝑚𝑎𝑥 values are set lower than 

this, typically 0.96, and this value remains fixed. For all other surface types, a modification to the 

original NEM allows for optimization of 𝜖𝑚𝑎𝑥 using an empirically based process. For the majority 

of materials in the ASTER spectral library, a typical range for 𝜖𝑚𝑎𝑥 is 0.94<𝜖𝑚𝑎𝑥<1.0. Therefore, 

for a material at 300 K, the maximum errors that NEM temperatures should have are ~±1.5 K, 

assuming the reflected sky irradiance has been estimated correctly. 

5.5 Subtracting Downwelling Sky Irradiance 

 Generally the effects of sky irradiance are small with typical corrections of <1 K (Gillespie 

et al. 1998). However, the contribution becomes larger for pixels with low emissivity (high 

reflectance) or in humid conditions when the sky is warmer than the surface. Over graybody 

surfaces (water and vegetation), the effects are small because of their low reflectivity in all bands. 

The first step of the NEM module is to estimate ground-emitted radiance, which is found by 

subtracting the reflected sky irradiance from the surface radiance term: 

 𝑅𝑖 = 𝐿𝑠,𝑖
′ − (1 − 𝜖𝑚𝑎𝑥) 𝐿𝜆

↓  (7)  

The NEM temperature, which we call 𝑇𝑁𝐸𝑀, is then estimated by inverting the Planck function for 

each band using 𝜖𝑚𝑎𝑥 and the ground-emitted radiance and then taking the maximum of those 

temperatures. The maximum temperature will most likely be closest to the actual surface 

temperature in the presence of uncompensated atmospheric effects.  
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𝑇𝑖 =
𝑐2

𝜆𝑖
(𝑙𝑛 (

𝑐1𝜖𝑚𝑎𝑥

𝜋𝑅𝑖𝜆𝑖
5 + 1))

−1

 (8)  

 

 𝑇𝑁𝐸𝑀 = max (𝑇𝑖) (9)  

The NEM emissivity spectrum is then calculated as the ratio of emitted radiance to that of a 

blackbody with a temperature estimated by 𝑇𝑁𝐸𝑀: 

 
𝜖𝑖

′ =
𝑅𝑖

𝐵𝑖(𝑇𝑁𝐸𝑀)
 (10)  

The new emissivity spectrum is then used to re-calculate 𝑅𝑖
′ = 𝐿𝑠,𝑖

′ − (1 − 𝜖𝑖
′) 𝐿𝜆

↓ , and the process 

is repeated until convergence, which is determined if the change in 𝑅𝑖 between steps is less than a 

set threshold, 𝑡2, which is set as the radiance equivalent to NEΔT of the sensor. The process is 

stopped if the number of iterations exceeds a limit N, set to 12. Execution of the NEM module is 

also aborted if the slope of 𝑅𝑖 versus iteration, 𝑐, increases such that |∆2𝑅′/∆𝑐2| > 𝑡1, where 𝑡1 is 

also set to radiance equivalent of NEΔT for the sensor (still to be determined for ECOSTRESS). 

In this case, correction is not possible, TES is aborted, and NEM values of 𝜖𝑖  and 𝑇𝑁𝐸𝑀  are 

reported in the QA data plane, along with an error flag. TES is also aborted and an error flag 

recorded if, for any iteration, the values of 𝜖𝑖 fall out of reasonable limits, set to 0.5 < 𝜖𝑖 < 1.0. 

See Figure 11 for a detailed description of these steps.  

5.6 Refinement of 𝛜𝐦𝐚𝐱 

 Most pixels at ECOSTRESS resolution (60 m) will contain a mixed cover type consisting 

of vegetation and  soil, rock and water.  The effective maximum emissivity for such pixels will 

therefore vary across the scene and depend on the fractional contribution of each cover type. For 

these cases, the initial 𝜖𝑚𝑎𝑥  = 0.99 may be set to high and refinement of 𝜖𝑚𝑎𝑥  is necessary to 
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improve accuracy of 𝑇𝑁𝐸𝑀. The optimal value for 𝜖𝑚𝑎𝑥 minimizes the variance, 𝜈, of the NEM 

calculated emissivities, 𝜖𝑖. The optimization of 𝜖𝑚𝑎𝑥 is only useful for pixels with low emissivity 

contrast (near graybody surfaces) and therefore is only executed if the variance for 𝜖𝑚𝑎𝑥= 0.99 is 

less than an empirically determined threshold (e.g., 𝑉1 = 1.7 × 10−4 for ASTER ) (Gillespie et al. 

1998). If the variance is greater than 𝑉1, then the pixel is assumed to predominately consist of  

either rock or soil. For this case, 𝜖𝑚𝑎𝑥 is reset to 0.96, which is a good first guess for most rocks 

and soils in the ASTER spectral library, which typically fall between the 0.94 and 0.99 range. If 

the first condition is met, and the pixel is a near-graybody, then values for 𝜖𝑚𝑎𝑥 of 0.92, 0.95, 0.97, 

and 0.99 are used to compute the variance for each corresponding NEM emissivity spectrum. A 

plot of variance 𝜈 versus each 𝜖𝑚𝑎𝑥 value results in an upward-facing parabola with the optimal 

𝜖𝑚𝑎𝑥 value determined by the minimum of the parabola curve in the range 0.9 < 𝜖𝑚𝑎𝑥 < 1.0. This 

minimum is set to a new 𝜖𝑚𝑎𝑥value, and the NEM module is executed again to compute a new 

𝑇𝑁𝐸𝑀. Further tests are used to see if a reliable solution can be found for the refined 𝜖𝑚𝑎𝑥. If the 

parabola is too flat, or too steep, then refinement is aborted and the original 𝜖𝑚𝑎𝑥 value is used. 

The steepness condition is met if the first derivative (slope of 𝜈 vs. 𝜖𝑚𝑎𝑥) is greater than a set 

threshold (e.g., 𝑉2 = 1.0 × 10−3  for ASTER) and the flatness conditions is met if the second 

derivative is less than a set threshold (e.g., 𝑉3 = 1.0 × 10−3 for ASTER). Finally, if the minimum 

𝜖𝑚𝑎𝑥 corresponds to a very low 𝜈, then the spectrum is essentially flat (graybody) and the original 

𝜖𝑚𝑎𝑥 = 0.99 is used. This condition is met if 𝜈𝑚𝑖𝑛 < 𝑉4 (e.g. 𝑉2 = 1.0 × 10−4 for ASTER). These 

thresholds will need to be refined for the ECOSTRESS bands and determined empirically. Table 

6 shows typical output from various stages of the TES algorithm for pixels representing three 

different surface types: sand dunes, vegetated cropland, and semi-vegetated cropland for an 

ASTER scene on July 15, 2000, over the Imperial Valley, southeastern California. Note the 
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different 𝜖𝑚𝑎𝑥 value for each of these surface types. The dune pixel was set to 0.96 due to large 

variance in emissivity; the fully vegetated pixel was set to 0.983, a typical value for a graybody; 

and 𝜖𝑚𝑎𝑥 for the semi-vegetated pixel needed to be optimized, resulting in a final value of 0.969.  

Table 5. Output from various stages of the TES algorithm for three surface types; sand dunes, vegetated 

cropland, and semi-vegetated cropland for an ASTER scene on July 15, 2000, over the Imperial Valley, 

southeastern California.  

 Algodones Dunes Cropland (vegetated) Cropland (semi-vegetated) 

𝝐𝒎𝒂𝒙 0.96 0.983 0.969 

MMD 0.189 0.013 0.028 

𝝐𝒎𝒊𝒏 0.793 0.967 0.944 

𝑻𝑵𝑬𝑴 337.06 K 305.92 K 319.75 K 

𝑻𝑻𝑬𝑺 337.41 K 306.14 K 319.65 K 

 

5.7 Ratio Module 

 In the ratio module, the NEM emissivities are ratioed to their average value to calculate a 

𝛽𝑖 spectrum as follows: 

 𝛽𝑖 =
𝜖𝑖

𝜖̅
 (11)  

Typical ranges for the 𝛽𝑖 emissivities are 0.75 < 𝛽𝑖 < 1.32, given that typical emissivities range 

from 0.7 to 1.0. Errors in the 𝛽𝑖  spectrum due to incorrect NEM temperatures are generally 

systematic.  

5.8 MMD Module 

 In the minimum-maximum difference (MMD) module, the 𝛽𝑖 emissivities are scaled to an 

actual emissivity spectrum using information from the spectral contrast or MMD of the 𝛽𝑖 

spectrum. The MMD can then be related to the minimum emissivity, 𝜖𝑚𝑖𝑛, in the spectrum using 

an empirical relationship determined from lab measurements of a variety of different spectra, 
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including rocks, soils, vegetation, water, and snow/ice. From 𝜖𝑚𝑖𝑛, the actual emissivity spectrum 

can be found by re-scaling the 𝛽𝑖 spectrum. First, the MMD of the 𝛽𝑖 spectrum is found by: 

 𝑀𝑀𝐷 = max(𝛽𝑖) − min (𝛽𝑖) (12)  

Then MMD can be related to 𝜖𝑚𝑖𝑛 using a power-law relationship: 

 𝜖𝑚𝑖𝑛 = 𝛼1 − 𝛼2𝑀𝑀𝐷𝛼3, (13)  

where 𝛼𝑗 are coefficients that are obtained by regression using lab measurements. For the five 

ECOSTRESS TIR bands between 8 and 12 µm (shown in Figure 1), the values for the coefficients 

were calculated as 𝛼1= 0.9948, 𝛼2 = 0.7160, and 𝛼3 = 0.7984. The TES emissivities are then 

calculated by re-scaling the 𝛽𝑖 emissivities: 

 
𝜖𝑖

𝑇𝐸𝑆 = 𝛽𝑖 (
𝜖𝑚𝑖𝑛

min (𝛽𝑖)
) (14)  

An example TES emissivity output image for ASTER band 12 (9.1 µm) is shown in Figure 12 (a) 

for an ASTER scene acquired on July 15, 2000, over the Imperial Valley, southeastern California. 

Bare areas, such as the Algodones Dunes running diagonally across the southeast corner, generally 

have emissivity <0.85, while graybody surfaces such as the Imperial Valley croplands and Salton 

Sea in the southwest corner of the image have higher emissivities >0.95. Figure 13 shows the 

differences in emissivity spectra between the NEM and TES output for pixels over three different 

surface types (sand dunes, vegetated cropland, and semi-vegetated cropland) for the ASTER 

Imperial Valley scene. Note that, although both NEM and TES have similar spectral shape, the 

emissivities of NEM are lower than TES because of errors in the initial estimate of 𝜖𝑚𝑎𝑥 in the 

NEM module. The Algodones Dunes spectrum has high spectral contrast that is typical for a quartz 

spectrum that has the characteristic quartz doublet in the 8–10-µm region, while the emissivity of 

vegetation is usually spectrally flat, and high. 
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Figure 12. (a) ASTER land surface emissivity for band 12 (9.1 µm) and (b) surface temperature products output 

from the TES algorithm over the Imperial Valley, southeastern California on July 15, 2000.  

 

 

Figure 13. ASTER derived TES and NEM emissivity spectra for three different surfaces in the ASTER scene 

shown in Figure 12: Algodones Dunes, full vegetation crops, and partially vegetated crops with a soil 

component. Details of the TES and NEM outputs from these spectra are shown in Table 4. 
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For pixels with low spectral contrast (e.g., graybody surfaces), the accuracy of MMD 

calculated from TES is compromised and approaches a value that depends on measurement error 

and residual errors from incomplete atmospheric correction. For ASTER, which has a NEΔT of 

0.3 K at 300 K, measurement error contributes to the apparent contrast, and a method was explored 

to correct the apparent MMD using Monte Carlo simulations. For ECOSTRESS (NEΔT of 0.1 K), 

we expect measurement errors to be minimal and atmospheric effects to be the largest contribution 

to MMD errors. A further problem for graybody surfaces is a loss of precision for low MMD 

values. This is due to the shape of the power-law curve of 𝜖𝑚𝑖𝑛 vs. MMD at low MMD values, 

where small changes in MMD can lead to large changes in 𝜖𝑚𝑖𝑛. To address these issues, the 

ASTER TEWG initially proposed a threshold classifier for graybody surfaces. If MMD<0.03, the 

value of 𝜖𝑚𝑖𝑛 in equation (13) was set to 0.983, a value typical for water and most vegetated 

surfaces. However, this classification was later abandoned as it introduced large step 

discontinuities in most images (e.g., from vegetation to mixed-cover types).  

The consequence of removing the threshold classifier was that over graybody surfaces 

errors in emissivity could range from 0.01 to 0.05 (0.5 K  to 3 K) due to measurement error and 

residuals errors from atmospheric correction (Gustafson et al. 2006; Hulley and Hook 2009b).  

 For ECOSTRESS, we expect to use original TES without classification and use the WVS 

method to correct the atmospheric parameters on a pixel-by-pixel basis. This method is described 

in the Surface Radiance ATBD and was not fully developed when the ASTER algorithm was 

developed. 

 For bare surfaces (rocks, soils, and sand), the error in NEM calculated T may be as much 

as 2–3 K, assuming a surface at 340 K due to the fixed assumption of 𝜖𝑚𝑎𝑥 = 0.96. This error can 

be corrected by recalculating T using the TES retrieved maximum emissivity, 𝜖𝑚𝑎𝑥
𝑇𝐸𝑆 , and the  
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atmospherically corrected radiances, 𝑅𝑖. The maximum emissivity used as correction for reflected 

𝐿𝜆
↓  will be minimal.  

 

𝑇𝑇𝐸𝑆 =
𝑐2

𝜆𝑚𝑎𝑥
(𝑙𝑛 (

𝑐1𝜖𝑚𝑎𝑥
𝑇𝐸𝑆

𝜋𝑅𝑖𝜆𝑚𝑎𝑥
5 + 1))

−1

 (15)  

An example TES surface temperature output image is shown in Figure 12 (b) for the ASTER 

Imperial Valley scene. Bare areas, such as the Algodones Dunes running diagonally across the 

southeast corner, generally have the highest temperatures with T>335 K, while graybody 

surfaces such as the Imperial Valley croplands and Salton Sea in the southwest corner have the 

coolest temperatures with T<315 K.  Figure 14 shows another example of a simulated 

ECOSTRESS LST image produced using TIR data from the MODIS/ASTER Airborne 

Simulator (MASTER) airborne instrument (Hook et al. 2001) at 60×60m spatial resolution using 

a 5-band TES approach over agricultural fields in the San Joaquin Valley, California. From this 

image it is clear that ECOSTRESS will be able to resolve agricultural fields at the 100 m scale to 

answer key questions related to water consumptive use. 

 In the original ASTER algorithm, a final correction is made for sky irradiance using the 

TES temperature and emissivities; however, this was later removed, as correction was minimal 

and influenced by atmospheric correction errors. This additional correction will not be used for 

ECOSTRESS.  

5.9 MMD vs. 𝛜𝐦𝐢𝐧 Regression 

 The relationship between MMD and 𝜖𝑚𝑖𝑛 is physically reasonable and is determined using 

a set of laboratory spectra in the ASTER spectral library v2.0 (Baldridge et al. 2009) and referred 

to as the calibration curve. The original ASTER regression coefficients were determined from a 

set of 86 laboratory reflectance spectra of rocks, soils, water, vegetation, and snow  
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Figure 14. Example of a simulated ECOSTRESS LST image produced using TIR data from the MASTER 

airborne instrument at 60×60m spatial resolution using a 5-band TES approach over agricultural fields in the 

San Joaquin Valley, California. 
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supplied by J.W. Salisbury from Johns Hopkins University. One question that needed to be 

answered was whether using a smaller or larger subset of this original set of spectra changed the 

results in any manner. Establishing a reliable MMD vs. 𝜖𝑚𝑖𝑛 relationship with a subset of spectral 

representing all types of surfaces is a critical assumption for the calibration curve. This assumption 

was tested using various combinations and numbers of different spectra (e.g.,  

Australian rocks, airborne data, and a subset of 31 spectra from Salisbury), and all yielded very 

similar results to the original 86 spectra.  

 For ECOSTRESS, the original 86 spectra were updated to include additional sand spectra 

used to validate the North American ASTER Land Surface Emissivity Database (NAALSED) 

(Hulley and Hook 2009b)  and additional spectra for vegetation from the MODIS spectral library 

and ASTER spectral library v2.0, giving a total of 150 spectra. The data were convolved to the 

nominal ECOSTRESS bands and 𝜖𝑚𝑖𝑛 and  𝛽𝑖 spectra calculated using equation (11) for each 

sample. The MMD for each spectra was then calculated from the  𝛽𝑖 spectra and regressed to the 

𝜖𝑚𝑖𝑛 values. The relationship follows a simple power law given by equation (13), with regression 

coefficients 𝛼1= 0.9950, 𝛼2 = 0.7264, and 𝛼3 = 0.8002, and 𝑅2 = 0.987. Figure 15 shows the 

power-law relationship between MMD and 𝜖𝑚𝑖𝑛 using the 150 lab spectra. 
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Figure 15. ECOSTRESS calibration curve of minimum emissivity vs. min-max difference (MMD). The lab data 

(crosses) are computed from 150 spectra consisting of a broad range of terrestrial materials (rocks, sand, soil, 

water, vegetation, and ice). 

    

5.10 Atmospheric Effects 

 The accuracy of the atmospheric correction technique used to estimate the surface radiance 

relies on the accuracy of the variables input to the radiative transfer model (e.g., air temperature, 

relative humidity, and ozone). The radiance sensitivity analysis present earlier showed that a 

change in atmospheric water vapor of 10% leads to a 2.1% change in radiance for the nominal 

ECOSTRESS band 1 (8.3 µm), which is the most susceptible to atmospheric absorption and 

emission of all bands, while a change in air temperature of 1 K leads to a -1.3% change in radiance, 

both for a standard tropical atmospheric profile. Changes in ozone and aerosol amount have much 

smaller effects, although for ASTER band 5 (9.1 µm), which is closer to the ozone absorption 

region, doubling the ozone resulted in a 2.2% change in radiance. These atmospheric errors tend 

to be highly correlated from band to band, since each channel has a characteristic absorbing 
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feature. As a result, the effect on TES output is usually relatively small, but if these errors are 

uncorrelated from band to band then much larger errors can occur, particularly for graybodies, 

where small changes in MMD can significantly alter the shape of the emissivity spectrum. For 

example, over water bodies, errors in emissivity of up to 3% (0.03) have been found due to 

uncompensated atmospheric effects (Hulley and Hook 2009b; Tonooka and Palluconi 2005).  

 One method for improving the accuracy of the surface radiance product is to apply the 

WVS method (Tonooka 2005). Using 183 ASTER scenes over lakes, rivers, and sea surfaces, it 

was found that using the WVS method instead of the standard atmospheric correction improved 

estimates of surface temperature from 3 to 8 K in regions of high humidity (Tonooka 2005). These 

are substantial errors when considering the required accuracy of the TES algorithm is  

~1 K (Gillespie et al. 1998). The WVS method is described in more detail in the ECOSTRESS 

Surface Radiance ATBD.  

 Figure 16 shows emissivity spectra over the Salton Sea, showing the effects of applying 

the WVS atmospheric correction method on the shape of the emissivity spectrum when compared 

to using the standard (STD) correction method without WVS. The emissivity spectrum of water is 

high (~0.98) and flat and the results in Figure 16 shows a dramatic improvement in emissivity 

accuracy in both magnitude (up to 0.06 for ASTER band 11, and 0.09 for MODIS band 29) and 

spectral shape when using the WVS as opposed to the STD method. Because of the humid day, 

where MOD07 PWV values were around 4 cm over the water, the spectral contrast of the STD 

emissivity results are overestimated for ASTER and MODIS data. However, when applying the 

WVS method, the ASTER emissivity spectra fall within 0.015 of the lab-measured spectrum, while 

MODIS emissivity spectra are within 0.005 at all wavelengths. Differences between the 3-and 5-

band TES algorithm applied to ASTER data were small. 
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Figure 16. Emissivity spectra comparisons for the Salton Sea on June 15, 2000, between ASTER (3-band), 

ASTER (5-band), and MODIS TES algorithm. Results from the water vapor scaling (WVS) method and the 

standard (STD) atmospheric correction are also shown. An estimate of the precipitable water vapor (PWV) 

from the MOD07 atmospheric product indicates very high humidity on this day. 
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6 Uncertainty Analysis 

NASA has identified a major need to develop long-term, consistent products valid across 

multiple missions, with well-defined uncertainty statistics addressing specific Earth-science 

questions. These products are termed Earth System Data Records (ESDRs), and LST&E has been 

identified as an important ESDR. Currently a lack of understanding of LST&E uncertainties limits 

their usefulness in land surface and climate models. In this section we present results from an 

LST&E uncertainty simulator that has been developed to quantify and model uncertainties for a 

variety of TIR sensors and LST algorithms (Hulley et al. 2012b). Using the simulator, uncertainties 

were estimated for the L2 products of ECOSTRESS using a 5-band TES approach. These 

uncertainties are parameterized according to view angle and estimated total column water vapor 

for application to real-time ECOSTRESS data. 

6.1 The Temperature and Emissivity Uncertainty Simulator 

A Temperature Emissivity Uncertainty Simulator (TEUSim) has been developed for 

simulating LST&E uncertainties from various sources of error for the TES and SW algorithms in 

a rigorous manner for any appropriate TIR sensor. These include random errors (noise), systematic 

errors (calibration), and spatio-temporally correlated errors (atmospheric). The MODTRAN 5.2 

radiative transfer model is used for the simulations with a global set of radiosonde profiles and 

surface emissivity spectra representing a broad range of atmospheric conditions and a wide variety 

of surface types. This approach allows the retrieval algorithm to be easily evaluated under realistic 

but challenging combinations of surface/atmospheric conditions. The TEUSim is designed to 

separately quantify error contributions from the following potential sources: 

1. Noise  
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2. Algorithm (Model) 

3. Atmospheric correction  

4. Undetected cloud  

5. Calibration 

The results presented in this study will focus on the first three of these error sources: noise, 

algorithm, and atmospheric.  

6.2 Atmospheric Profiles 

The TEUSim uses a global set of atmospheric radiosoundings constructed from the 

University of Wyoming Atmospheric Science Department’s CLAR database (Galve et al. 2008). 

CLAR contains 382 globally distributed radiosoundings for both day and night in 65 layers from 

the surface to 100 km. The CLAR database includes a wide range of TCW estimates up to 7 cm 

and surface air temperature ranging from 20º C to 40º C. Radiosondes acquired from 2003 to 

2006 were distributed over three latitude ranges (40% from 0º–30º, 40% from 30º–60º, 20% above 

60º) and screened for cloud and fog contamination using a procedure described by Francois et al. 

(2002).  

6.3 Radiative Transfer Model 

In TEUSim the latest version of MODTRAN (v5.2) was used for the radiative transfer 

calculations. MODTRAN 5.2 uses an improved molecular band model, termed the Spectrally 

Enhanced Resolution MODTRAN (SERTRAN), which has a much finer spectroscopy (0.1 cm-1) 

than previous versions (1–2 cm-1). This results in higher accuracy in modeling of band absorption 

features in the longwave TIR window regions, and comparisons with line-by-line models has 

shown good accuracy (Berk et al. 2005).  
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6.4 Surface End-Member Selection 

A selection of emissivity spectra from the ASTER Spectral Library v2.0 (ASTlib) 

(Baldridge et al. 2009) were used to define the surface spectral emission term in MODTRAN. A 

total of 59 spectra were chosen based on certain criteria and grouped into four surface 

classifications: rocks (20), soils (26), sands (9), and graybodies (4). The doublets between 8–

9.5 µm and 12.5–13 µm are the result of Si-O stretching, and the exact position of the feature at 

11.2 µm is dependent on the size of the cation paired with the carbonate (CO3) molecule. Spectra 

were chosen to represent the most realistic effective emissivities observed at the remote sensing 

scales of ASTER (90 m) and MODIS (1 km) using the following methodology.  

For rocks, certain spectra were removed prior to processing based on two considerations. 

First, samples that rarely exist as kilometer-scale, sub-aerial end-member exposures on the Earth’s 

surface such as pyroxenite or serpentinite were eliminated. Second, and in parallel, spectrally 

similar samples were eliminated. Spectral similarity was defined by the location, shape, and 

magnitude of spectral features between 7 and 13 µm. All eliminated samples are represented in the 

final selection through spectrally-similar end-member types. The final rock set included 20 spectra.  

ASTlib includes 49 soil spectra classified according to their taxonomy, such as Alfisol (9), 

Aridisol (14), Entisol (10), Inceptisol (7) and Mollisol (9). Filtering in this case was based solely 

on spectral similarity between each taxonomy type. The final soils set included 26 soil spectra.  

A set of nine emissivity spectra collected in separate field campaigns during 2008 over 

large homogeneous sand dune sites in the southwestern United States in support of validation for 

the NAALSED v2.0 (Hulley et al. 2009a) were used for sands. The sand samples consist of a wide 

variety of different minerals including quartz, magnetite, feldspars, gypsum, and basalt mixed in 
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various amounts, and represent a broad range of emissivities in the TIR as detailed in Hulley et al. 

(2009a).  

To represent graybody surfaces, spectra of distilled water, ice, snow, and conifer were 

chosen from ASTlib. Four spectra were sufficient to represent this class since graybody surfaces 

exhibit low contrast and high emissivities. It should be noted that certain types of man-made 

materials were not included, such as aluminum roofs that do not occur at the spatial resolution of 

these sensors, but should be included for higher-spatial-resolution data sets such as those provided 

by airborne instruments. 

6.5 Radiative Transfer Simulations 

In the TEUSim, each CLAR radiosonde profile for each set of end-member spectra was 

used as an input to MODTRAN 5.2. A seasonal rural aerosol was assumed with standard profiles 

for fixed gases within MODTRAN. For MODIS, five viewing angles were used, representing the 

Gaussian angles proposed by Wan and Dozier (1996): 0°, 11.6°, 26.1°, 40.3°, and 53.7°. In the 

WVS simulation model, the downward sky irradiance, 𝐿𝜆 (𝜃), can be modeled using the path 

radiance, transmittance, and view angle. To simulate the downward sky irradiance in MODTRAN, 

the sensor target is placed a few meters above the surface, with surface emission set to zero, and 

view angle set at the prescribed angles above. In this configuration, the reflected downwelling sky 

irradiance is estimated for a given view angle. The total sky irradiance contribution for band i is 

then calculated by summing the contribution of all view angles over the entire hemisphere: 

 

𝐿𝑖
↓ = ∫ ∫ 𝐿𝑖

↓(𝜃) ∙ 𝑠𝑖𝑛𝜃 ∙ 𝑐𝑜𝑠𝜃 ∙ 𝑑𝜃 ∙ 𝑑𝛿

𝜋/2

0

2𝜋

0

 (16)  
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where 𝜃  is the view angle and 𝛿  is the azimuth angle. To minimize computational time, the 

downward sky irradiance is first modeled as a non-linear function of path radiance at nadir view 

using (17) (Tonooka 2001): 

 𝐿𝑖
↓(𝛾) = 𝑎𝑖 + 𝑏𝑖 ∙ 𝐿𝑖

↑(0, 𝛾) + 𝑐𝑖𝐿𝑖
↑(0, 𝛾)2 (17)  

where 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 are regression coefficients, and 𝐿𝑖
↑(0, 𝛾) is computed by: 

 
𝐿𝑖

↑(0, 𝛾) = 𝐿𝑖
↑(𝜃, 𝛾) ∙

1 − 𝜏𝑖(𝜃, 𝛾)𝑐𝑜𝑠𝜃

1 − 𝜏𝑖(𝜃, 𝛾)
 (18)  

Equations (17) and (18) were used to estimate the downwelling sky irradiance in the TEUSim 

results using pre-calculated regression coefficients for ECOSTRES bands. The reflected sky 

irradiance term is generally smaller in magnitude than the surface-emitted radiance, but needs to 

be taken into account, particularly on humid days when the total atmospheric water vapor content 

is high. The simulated LST is based on the surface air temperature in the CLAR database as 

follows:  

 𝐿𝑆𝑇𝑠𝑖𝑚 = 𝑇𝑎𝑖𝑟 + 𝛿𝑇 (19)  

where 𝐿𝑆𝑇𝑠𝑖𝑚  and 𝑇𝑎𝑖𝑟  are the simulated LST and surface air temperature. Galve et al. (2008) 

found a mean 𝛿𝑇  of +3 K and standard deviation of 9 K from a global study of surface-air 

temperature differences over land in the MODIS MOD08 and MOD11 products. We therefore 

defined 𝛿𝑇 as a random distribution with a mean of 3 K and a standard deviation of 9 K for each 

profile input to MODTRAN. 

The TES algorithm uses surface radiance as input, which can be derived from the 

atmospheric transmittance 𝜏𝜆(𝜃), TOA radiance 𝐿𝜆(𝜃), path radiance 𝐿𝜆
↑ (𝜃), and downward sky 

irradiance 𝐿𝜆
↓ (𝜃). To calculate the various sources of error in LST&E retrievals from TES, these 

variables were simulated for the following conditions:  
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1. Perfect atmosphere (i.e., exact inputs): 𝐿𝜆(𝜃) and atmospheric parameters 𝜏𝜆(𝜃), 𝐿𝜆
↑ (𝜃), and 

𝐿𝜆
↓ (𝜃) calculated using a given profile, surface type and viewing angle;  

2. 𝐿𝜆(𝜃) and adjusted atmosphere (i.e., imperfect inputs): 𝜏𝜆
′  (𝜃), 𝐿𝜆

′↑(𝜃), and 𝐿𝜆
′↓(𝜃) calculated 

using perturbed temperature and humidity profiles to simulate real input data;  

The above conditions were run for ‘perfect’ 𝐿𝜆(𝜃) and also with adding random noise to 

the radiances based on the sensor’s noise equivalent delta temperature NET (0.01 K for  

6.6 Error Propagation 

The set of 382 CLAR radiosonde profiles were adjusted to simulate real data by applying 

estimated uncertainties from the MODIS MOD07 atmospheric product (Seemann et al. 2006; 

Seemann et al. 2003). Using a dataset of 80 clear sky cases over the SGP ARM site (Tobin et al. 

2006), MOD07 air temperature RMS errors showed a linearly decreasing trend from 4 K at the 

surface to 2 K at 700 mb, and a constant 2 K above 700 mb (Seemann et al. 2006). These reported 

values were used to perturb the air temperature profiles at each associated level using a random 

number generator with a mean centered on the RMS error. The uncertainty of the water vapor 

retrievals were estimated to be between 10–20% (Seemann et al. 2006). Accordingly, the relative 

humidity profiles were adjusted by scaling factors ranging from 0.8 to 1.2 in MODTRAN using a 

uniformly distributed random number generator.  

The total LST uncertainty for the TES algorithm based on model, atmospheric and 

measurement noise contributions can be written as: 

 𝛿𝐿𝑆𝑇𝑇𝐸𝑆 = [𝛿𝐿𝑆𝑇𝑀 + 𝛿𝐿𝑆𝑇𝐴 + 𝛿𝐿𝑆𝑇𝑁]1/2 (20)  

where 𝛿𝐿𝑆𝑇𝑀 is the model error due to assumptions made in the TES calibration curve, 𝛿𝐿𝑆𝑇𝐴 is 

the atmospheric error, and 𝛿𝐿𝑆𝑇𝑁 is the error associated with measurement noise. These errors are 

assumed to be independent. 
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To calculate the separate contributions from each of these errors let us first denote the simulated 

atmospheric parameters as x = [𝜏𝜆(𝜃), 𝐿𝜆
↑ (𝜃), 𝐿𝜆

↓ (𝜃)] and simulated observed radiance parameter 

as 𝑦 = 𝐿𝜆(𝜃). Both 𝑥 and 𝑦 are required to estimate the surface radiance that is input to the TES 

algorithm. In reality, however, the input parameters 𝑥 are not known explicitly, but are associated 

with some error, 𝛿𝑥, which we write as 𝑥̂ = 𝑥 + 𝛿𝑥. Similarly, the observed radiances have an 

associated noise based on the NET of the specific sensor, which we will denote by 𝑦̂ . To 

characterize the model error, we express the TES algorithm as a function based on perfect input 

parameters 𝑥 and 𝑦 such that 𝐿𝑆𝑇𝑇𝐸𝑆 = 𝑓(𝑥, 𝑦). The model error, 𝛿𝐿𝑆𝑇𝑀, i.e., due to assumptions 

in the TES algorithm alone, can then be written as: 

 

Table 6. Simulated LST accuracy, precision and uncertainty for a vegetated surface type using MODTRAN 

Monte Carlo simulations with a US Standard atmosphere and realistic perturbation errors to geophysical 

parameters of air temperature, relative humidity, NET, and Ozone.  

Geophysical 
Parameter 

Uncertainty in 
Parameter 

Accuracy 
[K] 

Precision 
[K] 

Uncertainty 
[K] 

Air Temperature 2 K (surface to 700 mb) 
1 K (700 mb to TOA) 

0.15 0.01 0.15 

Relative Humidity 20% 0.21 0.18 0.28 

Algorithm (NET) 0.1 K 0.10 0.11 0.15 

Ozone × 2 0.11 0.02 0.11 
 Analysis 0.30 0.21 0.37 
 Requirement 2.00 0.30 2.02 

 

 𝛿𝐿𝑆𝑇𝑀 = E[(𝑓(𝑥, 𝑦) − LSTsim)2 |𝑥, 𝑦]1/2 (21)  

where LSTsim is the simulated LST used in the MODTRAN simulations, and 𝐸[∙ |𝑥, 𝑦] denotes the 

mean-square error between the retrieved and simulated LST for inputs 𝑥 and 𝑦. The atmospheric 

error can be written as the difference between TES using perfect atmospheric inputs, 𝑥  and 

imperfect inputs, 𝑥̂: 
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𝛿𝐿𝑆𝑇𝐴 = E [(𝑓(𝑥̂, 𝑦) − 𝑓(𝑥, 𝑦))

2
 |𝑥, 𝑦]

1/2

 (22)  

And lastly the error due to measurement noise can be written as the difference between TES with 

perfect simulated TOA radiances, 𝑦 and TES with noisy radiances, 𝑦̂: 

 
𝛿𝐿𝑆𝑇𝑁 = E [(𝑓(𝑥, 𝑦̂) − 𝑓(𝑥, 𝑦))

2
 |𝑥, 𝑦]

1/2

 (23)  

Since the TES algorithm simultaneously retrieves the LST and spectral emissivity, the above 

equations also apply to the corresponding emissivity retrieval for each band. 

Table 7 shows results of a Monte Carlo uncertainty simulation to investigate the relative 

contributions of errors in each input geophysical profiles (air temperature, relative humidity), 

instrument noise (NET), and ozone burden, for a TES retrieval optimized for the five 

ECOSTRESS bands using Water Vapor Scaling (WVS) (Tonooka 2005). Errors were randomized 

at each profile level for each run (1,000)  using a uniformly distributed random number generator. 

A U.S. standard atmosphere was used with the MODTRAN simulation model. Errors in air 

temperature were estimated at 2 K from surface to 700 mb and 1 K above 700 mb (Seemann et al. 

2006), and 20% for relative humidity. For ozone, the total column amount was doubled to estimate 

the effects on temperature retrieval. Results from Table 7 show that errors in relative humidity 

have the largest effect on LST retrieval with precision and uncertainty of 0.18 K and 0.28 K 

respectively, followed by air temperature with a total uncertainty of 0.15 K. Uncertainties due to 

instrument noise and ozone are at the 1/10 K level. The total uncertainty when adding up each 

error contribution is 0.37 K, which falls well within the measurement requirement of 2 K for the 

ECOSTRESS mission. 

Table 8 shows uncertainty results for four different surface classes including graybodies 

(vegetation, water, ice, snow), rocks, soils and sands all extracted from the ASTER spectral library 

(Baldridge et al. 2009). Radiances were forward calculated using emissivities from each surface 
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type and a global set of radiosonde profiles extracted from the CLAR database. Random errors 

were simulated at each level using a uniformly distributed random number generator for the 

profiles (2 K temperature, 20% humidity, instrument noise of 0.1 K) and surface temperature 

estimated using equation 19. Two different versions of TES were used for the retrievals, a 3-band 

TES using ECOSTRESS bands 2, 4 and 5, and a 5-band TES version using all 5 ECOSTRESS 

bands. Simulations were all run at nadir view angle. The results show that rock samples had the 

greatest uncertainty in retrieved LST but was larger for the 3-band TES (1.45 K) when compared 

to the 5-band approach (1.2 K). This is due to larger scatter and uncertainty in the calibration curve 

when less bands are used for the regression, combined with the fact that rocks typically have larger 

spectral contrast and more difficult to retrieve spectral shapes. The total uncertainty for the 3-band 

approach was 1.15 K, while the 5-band approach had a total uncertainty below the 1 K level, well 

within the 2 K uncertainty requirement for ECOSTRESS.  

 

 

 

Table 7. Simulated ECOSTRESS LST uncertainties using a 3-band and 5-band TES algorithm for 4 different 

surface classes with surface emissivity spectra taken from the ASTER spectral library (111 total samples), 

MODTRAN simulations, and 382 global radiosonde profiles. The LST uncertainty includes random errors in 

simulated air temperature (2 K), relative humidity profile (20%), and instrument noise (0.1 K) as discussed in 

the text. 

   LST Uncertainty [K] 
Surface Type Samples Simulations TES 3-band TES 5-band 
Vegetation, 
water, ice, snow 

8 660,096 1.19 0.93 

Rocks 48 3,960,686 1.45 1.16 
Soils 45 3,713,040 0.90 0.81 
Sands 10 825,120 0.99 0.92 
Total 111 9,158,832 1.15 0.96 
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6.7 Parameterization of Uncertainties  

A key requirement for generating a LST&E dataset is accurate knowledge of all 

contributing uncertainties. Uncertainties for each input product must be rigorously estimated for a 

variety of different conditions on a pixel-by-pixel basis before they can be merged and 

incorporated into a time series of measurements of sufficient length, consistency, and continuity 

to adequately meet the science requirements. Current LST&E datasets are available with quality 

control information, but do not include a full set of uncertainty statistics. For example, the standard 

ASTER and MODIS LST product QC data planes specify qualitative uncertainty information, and 

MODIS includes a rough estimate of LST&E error, but no uncertainty data-planes exist on a pixel-

by-pixel basis dependent upon factors such as land cover type, view angle, and total column water 

vapor.  

The next logical step is to apply the uncertainty statistics produced from the TEUSim to 

real data (e.g. ECOSTRESS). To achieve this the total uncertainty, taken as the RMSE of the 

differences between simulated (truth) and retrieved LST&E including atmospheric error, was 

modeled according to view angle, total water vapor column amount, and land surface type using a 

least-squares method fit to a quadratic function. Three surface types were classified: graybody, 

transitional, and bare. The transitional surface represents a mixed cover type, and was calculated 

by varying the vegetation fraction cover percentage, 𝑓𝑣, by 25, 50, and 75% for the set of bare 

surface spectra (rocks, soils, sand) as follows:  

 𝜀𝑡𝑟𝑎𝑛𝑠 = 𝜀𝑔𝑟𝑎𝑦 ∙ 𝑓𝑣 + 𝜀𝑏𝑎𝑟𝑒 ∙ (1 − 𝑓𝑣) (24)  

where 𝜀𝑡𝑟𝑎𝑛𝑠 is the transition emissivity, 𝜀𝑔𝑟𝑎𝑦 is a graybody emissivity spectrum (e.g., conifer), 

and 𝜀𝑏𝑎𝑟𝑒 are the lab emissivities for bare surfaces. 

The total uncertainty includes both a sensor view angle (SVA) and TCW dependence.  
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 𝛿𝐿𝑆𝑇𝑀𝑂𝐷𝐼𝑆 = 𝑎𝑜 + 𝑎1𝑇𝐶𝑊 + 𝑎2SVA + 𝑎3𝑇𝐶𝑊 ∙ 𝑆𝑉𝐴 + 𝑎4𝑇𝐶𝑊2

+ 𝑎5𝑆𝑉𝐴2 

(25)  

Similarly, the band-dependent emissivity uncertainties can be expressed as: 

 𝛿𝑖,𝑀𝑂𝐷𝐼𝑆 = 𝑎𝑖,𝑜 + 𝑎𝑖,1𝑇𝐶𝑊 + 𝑎𝑖,2SVA + 𝑎𝑖,3𝑇𝐶𝑊 ∙ 𝑆𝑉𝐴 + 𝑎𝑖,4𝑇𝐶𝑊2 + 𝑎𝑖,5𝑆𝑉𝐴2 (26)  

where 𝛿𝐿𝑆𝑇 is the LST uncertainty (K) calculated as the difference between the simulated and 

retrieved LST, 𝛿𝑖  is the band-dependent emissivity uncertainty for band i, calculated as the 

difference between the input lab emissivity and retrieved emissivity, and 𝑎𝑖 and 𝑎𝑖,𝑗 are the LST 

and emissivity regression coefficients and depend on surface type (graybody, transition, bare).  

A sensitivity study showed that the parameterizations given by equations 24–26 provided 

the best fit to the simulation results in terms of RMSE, with fits of ~0.1 K. Once the coefficients 

are established they can be applied on a pixel-by-pixel basis across any scene given estimates of 

TCW from either a retrieval (e.g., MODIS MOD07 or AIRS) or a numerical weather model (e.g., 

ECMWF, NCEP), and the SVA from the product metadata. A simple emissivity threshold using a 

band with large spectral variation can be used to discriminate between graybody, transition, and 

bare types in any given scene for application of the relevant coefficients. This uncertainty model 

will be applied to ECOSTRESS LST&E retrievals and included in the Scientific Data Set (SDS). 

The uncertainties will be calculated on a pixel-by-pixel basis for LST and emissivity for all 5 

bands.  

Figure 17 (a) shows an example of retrieved LST using the TES algorithm for MODIS data 

and corresponding uncertainty in Figure 17(c), while Figure 17(b) shows the retrieved emissivity 

for MODIS band 29 and corresponding uncertainty in Figure 17(d). The highest LST uncertainties 

range from 2–3 K in the monsoonal region to over 5 K on the edges of cloudy regions, where 

uncertainties are highest as expected. Over most of the scene where TCW values are <2 cm, the 
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LST uncertainties are generally <1.5 K. Similar to the LST results, the uncertainties in band 29 

emissivity are highest over the monsoonal region, ranging from 0.03–0.05, and along the edges of 

clouds. Over drier regions of California and Nevada, there is a stronger uncertainty correlation 

with cover type, with lowest uncertainties over the denser forests of the Sierra Nevadas (~0.015) 

and slightly higher over bare and mixed regions (~0.02). For this scene, retrievals were restricted 

to view angles <40º, so uncertainty dependencies related to view angle are not evident; however, 

at angles >40º the uncertainties for both LST and emissivity increase noticeably due to reasons 

discussed earlier. 

 

 

Figure 17. MODIS 3-band TES retrievals over the southwestern United States on 7 August 2004: (a) (top left) 

LST, (b) (top right) emissivity for band 29 (8.55 µm), (c) (bottom left) LST uncertainty, and (d) (bottom right) 

emissivity uncertainty for band 29 (8.55 µm). White areas over land indicate areas of cloud that have been 

masked out using the MOD35 cloud mask product.  
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7 Quality Control and Diagnostics 

 The T and 𝜖 products will need to be assessed using a set of quality control (QC) flags. 

These QC flags will involve automatic tests processed internally for each pixel and will depend on 

various retrieval conditions such as whether the pixel is over land or ocean surface, the atmospheric 

water vapor content (dry, moist, very humid, etc.), and cloud cover. The data quality attributes will 

be set automatically according to parameters set on data conditions during algorithm processing 

and will be assigned as either "bad," "suspect," or "good." Estimates of the accuracy and precision 

of the T and 𝜖 product will be reported in a separate data plane. At each step in the TES algorithm, 

various performance information will be output, which will give the user a summary of algorithm 

statistics in a spatial context. This type of information will be useful for determining surface type, 

atmospheric conditions, and overall performance of TES.   

 The architecture of the ECOSTRESS T and 𝜖 QA data plane will closely resemble that of 

ASTER (Gillespie et al. 1998) and the MOD21 product (Hulley et al. 2012a). It will consist of 

header information followed by an 8-bit QA data plane. The structure of the QA data plane will 

consist of ten primary fields, which are detailed in Table 9: 

1. Mandatory QA flags: Overall description of status of pixel, produced with good quality, 

unreliable quality, not produced due to cloud, or other reasons than cloud. 

2. Data Quality Field: good data, missing pixel, fairly and poorly calibrated are assigned to 

specific bit patterns. 

3. Cloud Mask Field: Outputs from cloud mask statistics, e.g., optically thick or thin cloud, 

cirrus or contrails, clear, or snow/ice determined from NDSI threshold.  
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4. Cloud Adjacency: Clear pixels defined in the cloud mask will be assigned an adjacency 

category dependent on distance to the nearest cloud defined quantitatively by the number of 

pixels (e.g., very close, close, far, very far).  

5. The final value of 𝜖𝑚𝑎𝑥 used in the NEM module after optimization (if necessary).  

6. Number of iterations needed to remove reflected downwelling sky irradiance. 

7. Atmospheric opacity test for humid scenes, using 𝐿𝜆
↓ /𝐿′ test. 

8. MMD regime: MMD<0.3 (near-graybody) or MMD>0.3 (likely bare). 

9. Emissivity accuracy (poor, marginal, good excellent). 

10. LST accuracy (poor, marginal, good excellent). 

 The emissivity and LST accuracies described in bits 12-15 will be estimated from the 

uncertainty parameterization model detailed in section 6.7. Classifying the performance level is 

based on typical validation results from using the TES algorithm from various instruments 

including ASTER and MODIS (Hulley and Hook 2011).  

 Pixels with 'unreliable quality' are typically either affected by nearby cloud, or have a large 

water vapor loading making the retrieval more uncertain. These pixels are flagged if they are within 

~500 m of a detected nearby cloud, if the emissivity for band 5 (12 micron) is less than 0.95, or if 

the transmissivity for that pixel is low (<0.3) due to a nearly opaque atmosphere (high water vapor). 

Emissivities for band 5 are usually invariant with respect to surface type and are high with values 

>0.96, unless the surface consists of rare mafic materials such as some basalts which are found in 

volcanic regions and have an unusually low emissivity in the longwave bands. If a pixel is affected 

by cloud, or there is incomplete atmospheric correction due to water vapor effects, band 5 

emissivities will typically fall below 0.95.   
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Table 8. Bit flags defined in the QC SDS for the 5-band ECOSTRESS algorithm.  

Bits Long Name Description 

1&0 Mandatory QA 
flags 

00 = Pixel produced, best quality 

01 = Pixel produced, nominal quality. Either 
one or more of the following conditions are 
met:  

1. emissivity in both bands 4 and 5 < 0.95,  
i.e. possible cloud contamination 

2. low transmissivity due to high water 
vapor loading (<0.4), check PWV values 
and error estimates 

3. Pixel falls on missing scan line in bands 
1&5, and filled using spatial neural net. 
Check error estimates.  

Recommend more detailed analysis of   
other QC information 

10 = Pixel produced, but cloud detected 

11 = Pixel not produced due to missing/bad 
data, user should check Data quality flag bits 

  3 & 2 Data quality flag 00 = Good quality L1B data 

01 = Missing stripe pixel in bands 1 and 5 

10 = not set 

11 = Missing/bad L1B data 

5 & 4 Cloud/Ocean Flag 

 

Not set. Please check ECOSTRESS GEO and 
CLOUD products for this information. 

7 & 6 Iterations 00 = Slow convergence 

01 = Nominal 

10 = Nominal 

11 = Fast 

9 & 8 Atmospheric 
Opacity 

00 = >=3 (Warm, humid air; or cold land) 

01 = 0.2 - 0.3 (Nominal value) 

10 = 0.1 - 0.2 (Nominal value) 

11 = <0.1 (Dry, or high altitude pixel) 
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11 & 10 MMD 00 = > 0.15 (Most silicate rocks) 

01 = 0.1 - 0.15 (Rocks, sand, some soils) 

10 = 0.03 - 0.1 (Mostly soils, mixed pixel) 

11 = <0.03 (Vegetation, snow, water, ice) 

13 & 12 Emissivity accuracy  

 

00 = >0.02 (Poor performance) 

01 = 0.015 - 0.02 (Marginal performance) 

10 = 0.01 - 0.015 (Good performance) 

11 = <0.01 (Excellent performance) 

15 & 14 LST accuracy 00 = >2 K (Poor performance) 

01 = 1.5 - 2 K (Marginal performance) 

10 = 1 - 1.5 K (Good performance) 

11 = <1 K (Excellent performance) 
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8 Scientific Data Set (SDS) Variables 

 

 The ECOSTRESS LST&E products will be archived in Hierarchical Data Format 5 - 

Earth Observing System (HDF5-EOS) format files. HDF is the standard archive format for 

NASA EOS Data Information System (EOSDIS) products. The LST&E product files will 

contain global attributes described in the metadata, and scientific data sets (SDSs)  with local 

attributes. Unique in HDF-EOS data files is the use of HDF features to create point, swath, and 

grid structures to support geolocation of data. These structures (Vgroups and Vdata) provide 

geolocation relationships between data in an SDS and geographic coordinates (latitude and 

longitude or map projections) to support mapping the data. Attributes (metadata), global and 

local, provide various information about the data. Users unfamiliar with HDF and HDF-EOS 

formats may wish to consult Web sites listed in the Related Web Sites section for more 

information. 

 The scientific variable arrays that will be output in the ECOSTRESS L2 product are 

highlighted in Table 10, including descriptions of data type, units, valid range, fill value, scale 

factor and offset. The sequence begins as a swath (scene) at a nominal pixel spatial resolution of 

38×68 meters at nadir and a nominal swath width of 402 km. The variables include the LST and 

estimated error, QC data-plane as described above, emissivity for 5 bands and associated errors, 

view angle of observation and the geodetic latitude and longitude information for each pixel. The 

data types and scaling factors have been optimized to minimize the amount of memory required 

to store the data. Additional variables used as ancillary inputs to the algorithm to estimate the 

uncertainty of the LST&E products may be output depending on space requirements. These 

include the total precipitable water vapor and vegetation indices derived from the atmospheric 

data and optical data from other instruments (e.g. VIIRS, MODIS or Landsat).  
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Table 9. The Scientific Data Sets (SDSs) for the ECOSTRESS L2 product. 

 

SDS Long Name Data type Units Valid 

Range 

Fill 

Value 

Scale 

Factor 

Offset 

Group SDS 
LST Land Surface 

Temperature 

uint16 K 7500-

65535 

0 0.02 0.0 

QC Quality control for 

LST and emissivity 

uint16 n/a 0-65535 0 n/a n/a 

Emis1 Band 1 emissivity  uint8 n/a 1-255 0 0.002 0.49 

Emis2 Band 2 emissivity uint8 n/a 1-255 0 0.002 0.49 

Emis3 Band 3 emissivity uint8 n/a 1-255 0 0.002 0.49 

Emis4 Band 4 emissivity uint8 n/a 1-255 0 0.002 0.49 

Emis5 Band 5 emissivity uint8 n/a 1-255 0 0.002 0.49 

LST_Err Land Surface 

Temperature error 

uint8 K 1-255 0 0.04 0.0 

Emis1_Err Band 1 emissivity 

error 

uint16 n/a 0-65535 0 0.0001 0.0 

Emis2_Err Band 2 emissivity 

error 

uint16 n/a 0-65535 0 0.0001 0.0 

Emis3_Err Band 3 emissivity 

error 

uint16 n/a 0-65535 0 0.0001 0.0 

Emis4_Err Band 4 emissivity 

error 

uint16 n/a 0-65535 0 0.0001 0.0 

Emis5_Err Band 5 emissivity 

error 

uint16 n/a 0-65535 0 0.0001 0.0 

EmisWB Wideband 

emissivity 

uint8 n/a 1-255 0 0.002 0.49 

PWV Precipitable Water 
Vapor 

uint16 cm 0-65535 0 0.001 0.0 
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9 Calibration/Validation Plans 
 

 The ECOSTRESS payload will have two blackbodies operating at approximately 300 K 

and 340 K. Both blackbodies will be viewed with each cross-track sweep every 1.29 seconds to 

provide gain and offset calibrations. During pre-flight ground calibration, a large high-emissivity 

cavity blackbody target will be measured to provide radiometric calibration. Data from the 

ground calibration will be used to correct the expected small errors intrinsic to compact flight 

blackbodies, and any radiometer nonlinearity. All flight and ground calibration blackbodies will 

utilize redundant NIST-traceable temperature sensors. The calibrated data will have a 300 K 

radiometric accuracy of 0.5 K and a radiometric precision of 0.1 K in 5 spectral bands. 

ECOSTRESS has both a measurement requirement and a measurement capability for the data 

and products. In all cases the capability exceeds the requirement and provides margin on the 

measurement requirement.  

 In addition to calibration with blackbodies, ECOSTRESS will perform vicarious 

calibration using a well characterized set of ground calibration/validation sites shown in Table 

11. Calibration/Validation sites will include well established water, vegetation, and barren targets 

(Hook et al. 2004; Hulley et al. 2009a). Many of these sites are currently being used to validate 

the TIR measurements of ASTER and MODIS (Hook et al. 2007; Hulley et al. 2009a). This 

work will be conducted as part of the SDS activities and will ensure that the ECOSTRESS data 

and products meet the required accuracy, precision and uncertainty. 

 Two methods have been established for validating LST data: a conventional T-based 

method and an R-based method (Wan and Li 2008). The T-based method requires ground 

measurements over thermally homogenous sites concurrent with the satellite overpass, while the 

R-based method relies on a radiative closure simulation in a clear atmospheric window region to  
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Table 10. ECOSTRESS targets include all of CONUS plus 1,000 km regions centered on climate hotspots, 

agricultural regions, and FLUXNET validation sites. ENF: evergreen needleleaf forest; EBF: evergreen 

broadleaf forest;  WSA: woody savanna; SAV: Savanna; CRO: cropland; DBF: Deciduous Broadleaf Forest; 

Cal/Val: LST Calibration/Validation. 

Site Biome Type Latitude Longitude 
Climate Hotspot Regions 

Boreal North America ENF 47.0 -87.0 

Boreal Eurasia ENF 47.0 45.0 

Tropical/Dry Transition 1 EBF -12.0 -67.0 

Tropical/Dry Transition 2 EBF/WSA -16.0 -50.0 

Tropical/Dry Transition 3 EBF/WSA 20.0 -103.0 

Tropical/Dry Transition 4 WSA/SAV 9.0 4.0 

Tropical/Dry Transition 5 WSA/SAV -23.0 22.0 

Agricultural Regions 

Agricultural North America 1 CRO 35.7 -121.0 

Agricultural North America 2 CRO 41.5 -98.7 

Agricultural Eurasia 1 CRO 44.2 18.0 

Agricultural Eurasia 2 CRO 25.0 78.0 

Agricultural Eurasia 3 CRO 47.0 0.0 

ET and LST Validation Sites 

Campbell River, Canada ENF 49.9 -125.3 

Hartheim, Germany ENF 47.9 7.6 

Howland Forest, ME, USA ENF 45.2 -68.7 

Metolius, OR, USA ENF 44.5 -121.6 

Quebec Boreal, Canada ENF 49.7 -74.3 

Tatra, Slovak Republic ENF 49.1 20.2 

Wind River Crane, WA, USA ENF 45.8 -122.0 

Guyaflux, French Guyana EBF 5.3 -52.9 

La Selva, Costa Rica EBF 10.4 -84.0 

Manaus K34, Brazil EBF -2.6 -60.2 

Santarem KM67, Brazil EBF -2.9 -55.0 

Santarem KM83, Brazil EBF -3.0 -55.0 

Chamela, Mexico DBF 19.5 -105.0 

Duke Forest, NC, USA DBF 36.0 -79.1 

Hainich, Germany DBF, Cal/Val 51.1 10.5 

Harvard Forest, MA, USA DBF 42.5 -72.2 

Hesse Forest, France DBF 48.7 7.1 

Tonzi Ranch, CA, USA DBF/WSA 38.4 -121.1 

ARM S. Great Plains, OK, USA CRO 36.6 -97.5 

Aurade, France CRO 43.5 1.1 

Bondville, IL, USA CRO, Cal/Val 40.0 -88.3 

El Saler-Sueca, Spain CRO 39.3 -0.3 

Mead 1, 2, 3 NE, USA CRO 41.2 -96.5 

Salton Sea, CA Cal/Val 33.3 -115.7 

Lake Tahoe, CA Cal/Val 39.15 -120 

Gobabeb, Namibia Cal/Val 23.55 15.05 

Algodones Dunes, CA Cal/Val 33.0 -115.1 
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estimate the LST from top of atmosphere (TOA) observed brightness temperatures, assuming the 

emissivity is known from ground measurements. The T-based method is the preferred method, 

but it requires accurate in-situ measurements that are only available from a small number of 

thermally homogeneous sites concurrently with the satellite overpass. The R-based method is not 

a true validation in the classical sense, but it is useful for exposing biases in LST products and 

doesn't require simultaneous in-situ measurements and is therefore easier to implement both day 

and night over a larger number of global sites; however, it is susceptible to errors in the 

atmospheric correction and emissivity uncertainties.  

 Emissivity samples have been collected at the Algodones and Gobabeb Cal/Val sites and 

their emissivity determined in the laboratory using a Nicolet 520 FT-IR spectrometer (Gottsche 

and Hulley 2012b). Validation of emissivity data from space ideally requires a site that is 

homogeneous in emissivity at the scale of the imagery, allowing several image pixels to be 

validated over the target site. A validation study at the Land Surface Analysis–Satellite 

Application Facility (LSA-SAF) Gobabeb validation site in Namibia showed that MODIS 

emissivities derived from a 3-band TES approach (MOD21 product) matched closely with in-situ 

emissivity data (~1%), while emissivities based on land cover classification products (e.g., 

SEVIRI, MOD11) overestimated emissivities over the sand dunes by as much as 3.5% (Gottsche 

and Hulley 2012a). Similar studies will be performed with ECOSTRESS to determine if the 

spectral shapes of the emissivity retrievals are consistent with in situ measurements. 

 We plan to use the Lake Tahoe and Salton Sea automated validation sites for cal/val over 

water bodies. At these sites measurements of skin temperature have been made every two 

minutes since 1999 (Tahoe) and 2006 (Salton Sea) and are used to validate the mid and thermal 

infrared data and products from ASTER and MODIS (Hook et al. 2007). Water targets are ideal 
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for cal/val activities because they are thermally homogeneous and the emissivity is generally 

well known. A further advantage of Tahoe is that the lake is located at high altitude, which 

minimizes atmospheric correction errors, and is large enough to validate sensors from pixel 

ranges of tens of meters to several kilometers. Figure 18 shows an example of differences 

between the standard MODIS (MOD11_L2) and ASTER (AST08) LST products and in-situ 

measurements at Lake Tahoe. The MODIS product is accurate to ±0.2 K, while the ASTER 

product has a bias of 1 K due to residual atmospheric correction effects. The typical range of 

temperatures at Tahoe is from 5°C to 25°C. More recently in 2008, an additional cal/val site at 

the Salton Sea was established. Salton Sea is a low-altitude site with significantly warmer 

temperatures than Lake Tahoe (up to 35°C), and together they provide a wide range of different 

conditions.  

  

Figure 18. Difference between the MODIS (MOD11_L2) and ASTER (AST08) LST products and in-situ 

measurements at Lake Tahoe. The MODIS product is accurate to ±0.2 K, while the ASTER product has a bias 

of 1 K due to residual atmospheric correction effects since the standard product does not use a Water Vapor 

Scaling (WVS) optimization model. 
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 For vegetated surface types we will use a combination of data from the Surface Radiation 

Budget Network (SURFRAD) and FLUXNET sites. For SURFRAD, we will use a set of six 

sites established in 1993 for the continuous, long-term measurements of the surface radiation 

budget over the United States through the support of NOAA’s Office of Global Programs 

(http://www.srrb.noaa.gov/surfrad/). The six sites (Bondville, IL; Boulder, CO; Fort Peck, MT; 

Goodwin Creek, MS; Penn State, PA; and Sioux Falls, SD) are situated in large, flat agricultural 

areas consisting of crops and grasslands and have previously been used to assess the MODIS and 

ASTER LST&E products with some success (Augustine et al. 2000; Wang and Liang 2009). 

From FLUXNET and the Carbon Europe Integrated Project (http://www.carboeurope.org/), we 

will include an additional four sites to cover the broadleaf and needleleaf forest biomes (e.g., 

Hainich and Hartheim, Germany; Hesse Forest and Aurade, France; El Saler-Sueca, Spain), 

using data from the FLUXNET as well as data from the EOS Land Validation Core sites 

(http://landval.gsfc.nasa.gov/coresite_gen.html). We will further use data from the Atmospheric 

Radiation Measurement (ARM) cal/val site in Oklahoma, USA for validation of LST. The 

Southern Great Plains (SGP) site was the first field measurement site established by DOE's ARM 

Program. The SGP site consists of in situ and remote-sensing instrument clusters arrayed across 

approximately 55,000 square miles (143,000 square kilometers) in north-central Oklahoma. 

 For LST validation over arid regions, we will use two pseudo-invariant, homogeneous 

sand dune sites located in southwestern USA (Algodones dunes) and in Namibia (Gobabeb). 

These sites have already been used for validating ASTER, MODIS, and AIRS LST products, 

(Hulley et al. 2009b). The emissivity and mineralogy of samples collected at these sites have 

been well characterized and are described by Hulley et al. (2009a).  
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 Pseudo-invariant ground sites such as playas, salt flats, and claypans have been 

increasingly recognized as optimal targets for the long-term validation and calibration of visible, 

shortwave, and thermal infrared data (Bannari et al. 2005; Cosnefroy et al. 1996; de Vries et al. 

2007; Teillet et al. 1998). We have found that large sand dune fields are particularly useful for 

the validation of TIR emissivity data (Hulley and Hook 2009a). Sand dunes have consistent and 

homogeneous mineralogy and physical properties over long time periods. They do not collect 

water for long periods as playas and pans might, and drying of the surface does not lead to cracks 

and fissures, typical in any site with a large clay component, which could raise the emissivity due 

to cavity radiation effects (Mushkin and Gillespie 2005). Furthermore, the mineralogy and 

composition of sand samples collected in the field can be accurately determined in the laboratory 

using reflectance and x-ray diffraction (XRD) measurements. In general, the dune sites should be 

spatially uniform and any temporal variability due to changes in soil moisture and vegetation 

cover should be minimal. Ideally, the surface should always be dry, since any water on the 

surface can increase the emissivity by up to 0.16 (16%) in the 8.2–9.2-μm range depending on 

the type of soil (Mira et al. 2007).  

9.1 Emissivity Validation Methodology 

 

 Seasonal changes in vegetation cover, aeolian processes such as wind erosion, deposition 

and transport, and daily variations in surface soil moisture from precipitation, dew, and snowmelt 

are the primary factors that could potentially affect the temporal stability and spatial uniformity 

of the pseudo-invariant sand dune cal/val sites. The presence of soil moisture would result in a 

significant increase in TIR emissivity at the dune sites, caused by the water film on the sand 

particles decreasing its reflectivity (Mira et al. 2007; Ogawa et al. 2006), particularly for MODIS  
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Figure 19. Laboratory-measured emissivity spectra of sand samples collected at ten pseudo-invariant sand dune 

validation sites in the southwestern United States. The sites cover a wide range of emissivities in the TIR region. 

 

band 29 in the quartz Reststrahlen band. However, given that the dune validation sites are 

aeolian (high winds), at high altitude (low humidity), and in semi-arid regions (high skin 

temperatures), the lifetime of soil moisture in the first few micrometers of the surface skin layer 

as measured in the TIR is most likely small due to large sensible heat fluxes and, therefore, high 

evaporation rates, in addition to rapid infiltration. Consequently, we hypothesize that it would 

most likely take a very recent precipitation event to have any noticeable effect on remote-sensing 

observations of TIR emissivity over these types of areas. 

 Figure 19 shows emissivity spectra from sand dune samples collected at ten sand dune 

sites in the southwestern United States. The spectra cover a wide range of emissivities in the TIR 

region. These sites will be the core sites used to validate the emissivity and LST products from 
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ECOSTRESS. Figure 20 shows ASTER false-color visible images of each dune site and 

comparisons between the retrieved ASTER emissivity spectra and lab measurements. The lab 

spectra in Figure 20 show the mean and standard deviation (spatial) in emissivity for all sand 

samples collected at the site, while the ASTER spectra give the mean emissivity and combined 

spatial and temporal standard deviation for all observations acquired during the summer (July–

September) time periods. The results show that a 5-band TES derived emissivity from ASTER 

data captures the spectral shape of all the dune sands very well. The quartz doublet centered 

around ASTER band 11 (8.6 µm) is clearly visible for Algodones Dunes samples, and the 

characteristic gypsum minimum in ASTER band 11 (8.6 µm) is evident from the White Sands 

samples. Similar results are expected for the 5-band TES algorithm planned for ECOSTRESS 

 

Figure 20. ASTER false-color visible images (top) and emissivity spectra comparisons between ASTER TES 

and lab results for Algodones Dunes, California; White Sands, New Mexico; and Great Sands, Colorado 

(bottom). Squares with blue dots indicate the sampling areas. ASTER error bars show temporal and spatial 

variation, whereas lab spectra show spatial variation. 
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9.2 LST Validation Methodology 

 

9.2.1 Radiance-based Approach 

 

 For LST validation over the sand dune sites, we will use a recently established R-based 

validation method (Coll et al. 2009b; Wan and Li 2008). The advantage of this method is that it 

does not require in-situ measurements, but instead relies on atmospheric profiles of temperature 

and water vapor over the site and an accurate estimation of the emissivity. The R-based method 

is based on a ‘radiative closure simulation’ with input surface emissivity spectra from either lab 

or field measurements, atmospheric profiles from an external source (e.g., model or radiosonde), 

and the retrieved LST product as input. A radiative transfer model is used to forward model these 

parameters to simulate at-sensor BTs in a clear window region of the atmosphere (11–12 µm). 

The input LST product is then adjusted in 2-K steps until two calculated at-sensor BTs bracket 

the observed BT value. An estimate of the ‘true’ temperature (𝐿𝑆𝑇𝑅−𝑏𝑎𝑠𝑒𝑑) is then found by 

interpolation between the two calculated BTs, the observed BT, and the initial retrieved LST 

used in the simulation. The LST error, or uncertainty in the LST retrieval is simply found by 

taking the difference between the retrieved LST product and the estimate of 𝐿𝑆𝑇𝑅−𝑏𝑎𝑠𝑒𝑑. This 

method has been successfully applied to MODIS LST products in previous studies (Coll et al. 

2009a; Wan and Li 2008; Wan 2008). For MODIS data, band 31 (10.78–11.28 µm) is typically 

used for the simulation since it is the least sensitive to atmospheric absorption in the longwave 

region. The advantage of the R-based method is that it can be applied to a large number of global 

sites where the emissivity is known (e.g., from field measurements) and during night- and 

daytime observations to define the diurnal temperature range.  

 Wan and Li (2008) proposed a quality check to assess the suitability of the atmospheric 

profiles by looking at differences between observed and calculated BTs in two nearby window  
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A) Algodones dunes 

 

B) Great Sands 

 

C) Kelso 

 

D) Killpecker 

 

E) Little Sahara 

 

F) White Sands 

 

Figure 21. An example of the R-based validation method applied to the MODIS Aqua MOD11 and MOD21 

LST products over six pseudo-invariant sand dune sites using all data during 2005. AIRS profiles and lab-

measured emissivities from samples collected at the sites were used for the R-based calculations. 
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regions with different absorption features. For example, the quality check for MODIS bands 31 

and 32 at 11 and 12 µm is:  

 𝛿(𝑇11 − 𝑇12) = (𝑇11
𝑜𝑏𝑠 − 𝑇12

𝑜𝑏𝑠) − (𝑇11
𝑐𝑎𝑙𝑐 − 𝑇12

𝑐𝑎𝑙𝑐) (27)  

where: 𝑇11
𝑜𝑏𝑠 and 𝑇12

𝑜𝑏𝑠 are the observed brightness temperatures at 11 and 12 µm respectively, 

and 𝑇11
𝑐𝑎𝑙𝑐 and 𝑇12

𝑐𝑎𝑙𝑐 are the calculated brightness temperatures from the R-based simulation at 11 

and 12 µm respectively. If 𝛿(𝑇11 − 𝑇12) is close to zero, then the assumption is that the 

atmospheric temperature and water vapor profiles are accurately representing the true 

atmospheric conditions at the time of the observation, granted the emissivity is already well 

known. Because water vapor absorption is higher in the 12-µm region, negative residual values 

of 𝛿(𝑇11 − 𝑇12) imply the R-based profiles are overestimating the atmospheric effect, while 

positives values imply an underestimation of atmospheric effects. A simple threshold can be 

applied to filter out any unsuitable candidate profiles for validation. Although Wan and Li (2008) 

proposed a threshold of ±0.3 K for MODIS data, we performed a sensitivity analysis and found 

that a threshold of ±0.5 K resulted in a good balance between the numbers of profiles accepted 

and accuracy of the final R-based LST. Figure 21 shows an example of the R-based validation 

method applied to the MODIS Aqua MOD11 and MOD21 LST products over six pseudo-

invariant sand dune sites using all data during 2005. AIRS profiles and lab-measured emissivities 

from samples collected at the sites were used for the R-based calculations. The results show that 

the MOD11 SW LST algorithm underestimates the LST by 3–4 K at all sites except White 

Sands, while the MOD21 algorithm has biases of less than 0.5 K. The statistics of the results in 

including bias and RMSE are shown in Table 13. MOD11 RMSEs are as high as ~5 K at Great 

Sands, while MOD21 RMSEs are mostly at the 1.6 K level. The reason for the MOD11 cold bias 

is that the emissivity for barren surfaces is assigned one value that is fixed (~0.96 at 11 µm). This 
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causes large LST errors over bare sites where the mineralogy results in emissivities lower than 

that fixed value. The MOD21 algorithm, on the other hand, physically retrieves the spectral 

emissivity in MODIS bands 29, 31, and 32, along with the LST, and this results in more accurate 

LST results, particularly over bare regions where emissivity variations can be large, both 

spatially and spectrally. Table 14 shows comparisons between the laboratory-derived 

emissivities at each site, along with the mean MOD11 and MOD21 emissivities for band 31 

(11 µm). 

9.2.1.1 Uncertainty Analysis of R-based approach 

 

 The uncertainty in the R-based LST estimate (𝐿𝑆𝑇𝑅−𝑏𝑎𝑠𝑒𝑑) was calculated by perturbing 

the atmospheric temperature and water vapor profiles, and by varying the surface emissivity. 

Atmospheric effects were simulated by first increasing the relative humidity at each NCEP level 

by 10%, and then by increasing the air temperature by 1 K at each level. The effect on the 

accuracy of  𝐿𝑆𝑇𝑅−𝑏𝑎𝑠𝑒𝑑 was estimated as the calculated LST difference between the original and 

the perturbed profiles for the 11 µm window region. The results are summarized in Table 11. 

Using a standard profile with total column water vapor of 2 cm, the absolute LST differences 

where 0.35 K for the water vapor variation (10%), and 0.19 K for the air temperature variation (1 

K), resulting in a total atmospheric effect of ±0.39 K. Using an emissivity perturbation of 0.005 

(0.5%), which represents the maximum spatial variation found from the lab measured spectra 

and ASTER data at each site, resulted in an absolute LST difference of 0.23 K. Validation of the 

Stand-Alone AIRS Radiative Transfer Algorithm (SARTA) with in situ data have shown 

accuracies approaching 0.2 K depending on the wavenumber region (Strow et al. 2006), and this 

uncertainty was considered negligible The total combined root mean square error (RMSE) for 

the uncertainty in 𝐿𝑆𝑇𝑅−𝑏𝑎𝑠𝑒𝑑 based on estimated atmospheric profile, emissivity and radiative 
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transfer model errors was ±0.47 K. This is within the 1 K accuracy requirement for typical in situ 

measurements of LST (Hook et al. 2007). 

 Further, since air temperature and water vapor errors (and emissivity) typically cancel 

each other out and may have different signs at different levels, the simulated error of 0.47 K is 

most likely an overestimate, i.e. a 'worse-case-scenario'. Also, using the brightness temperature 

profile quality check would most likely filter out the majority of unsuitable profiles.  

Table 11. Uncertainty analysis results showing how perturbations in emissivity, air temperature and relative 

humidity affect the relative accuracy of the R-based LST derivation. 

 

Parameter Perturbation R-based LST Change 

Emissivity 𝜺 + 𝟎. 𝟎𝟎𝟓 0.23 K 

Air Temperature 𝑻𝒂𝒊𝒓 + 𝟏 𝑲 0.19 K 

Relative Humidity RH + 10% 0.35 K 

 

  

Table 12. R-based LST validation statistics from six pseudo-invariant sand dune sites using all MOD11 and 

MOD21 LST retrievals during 2005.  

  MOD11 Bias 
MOD11 

RMSE 
 MOD21 Bias 

MOD21 

RMSE 

Algodones (197 scenes) 2.65 2.78   0.50 1.60 

Great Sands  

(123 Scenes) 
4.71 4.74  0.43 1.52 

Kelso (210 scenes) 4.52 4.58  0.67 1.64 

Killpecker (147 scenes) 4.07 4.16   0.09 1.68 

Little Sahara  

(159 scenes) 
3.42 3.47   0.52 1.63 

White Sands  

(102 scenes) 
0.06 0.54   0.48 1.34 

 

 

     

 

 



ECOSTRESS LEVEL-2 ATBD  

86 

Table 13. Emissivity comparisons between lab, MOD11, and MOD21 at six pseudo-invariant sand sites. 

  Lab MOD11 MOD21 

Algodones (197 scenes) 0.963 0.966 0.954 

Great Sands (123 Scenes) 0.944 0.970 0.949 

Kelso (210 scenes) 0.942 0.966 0.949 

Killpecker (147 scenes) 0.942 0.968 0.946 

Little Sahara (159 scenes) 0.953 0.972 0.952 

White Sands (102 scenes) 0.976 0.974 0.967 

 

 

9.2.2 Temperature-based (T-based)  LST Validation Method 

 

 The T-based method provides the best evaluation of the ability for a LST retrieval 

algorithm to invert the satellite radiometric measurement and accurately account for emissivity 

and atmospheric effects. The difficulty of this method over land is that several accurate, well 

calibrated ground radiometers are required to make rigorous measurements concurrently with the 

satellite overpass over a large thermally homogeneous area ideally representing several pixels at 

the remote sensing scale. Field radiometers typically measure the radiometric temperature of the 

surface being measured, and this measurement has to be corrected for the reflected downwelling 

radiation from the atmosphere and the emissivity before the surface skin temperature can be 

obtained. An example of two state-of-the-art T-based validation sites are discussed next, Lake 

Tahoe, CA/NV and Salton Sea, CA.  

 Lake Tahoe is large clear freshwater lake situated on the California/Nevada border at 

1,996 m elevation making it the largest Alpine lake in North America, and USA's second 

deepest. The Lake Tahoe automated calibration/validation site, was established in 1999 with four 

buoys, referred to as TB1, TB2, TB3 and TB4,  which provide simultaneous measurements of 

skin and bulk temperatures in addition to meteorological data (air temperature, relative humidity, 
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wind speed and direction) every two minutes (Hook et al. 2007). Each buoy includes a custom-

built radiometer developed by JPL that has accuracies below the 0.1 K level. Calibration results 

have shown good agreement with other well-calibrated radiometers to within ±0.05 K (Barton et 

al. 2004). The radiometric measurements are converted to skin temperatures by accounting for 

the effects of emissivity and reflected downwelling sky radiation. For emissivity, an emissivity 

spectrum of water from the ASTER spectral library is used (http://speclib.jpl.nasa.gov) 

(Baldridge et al. 2009), and the reflected downwelling irradiance is computed using radiative 

transfer simulations with atmospheric profiles input from NCEP data (Hook et al. 2003).  Figure 

22 shows an example of the T-based validation results at Lake Tahoe cal/val site showing 

scatterplot between the MYD11 and MYD21 LST products and in situ radiometer measurements 

from 2003-2005. Both the TES and split-window products have similar accuracy in terms of bias 

and RMSE at this site. 

 The Salton Sea validation site is situated on a platform located in the southwest corner of 

the lake and was established more recently at the end of 2007. In contrast to Lake Tahoe, the 

Salton Sea is a large saline lake situated in southeastern California at an elevation of 75 m below 

sea-level. In situ measurements at these two lakes provide the most comprehensive and  largest 

data record of water skin temperatures available. The high quality and frequency of the 

measurements over long time periods and for a wide range of surface temperatures (~4 to 35 ºC) 

and atmospheric conditions make this an excellent in situ dataset for validation and calibration of 

multiple sensors with different overpass times (Hook et al. 2004; Hook et al. 2003; Hook et al. 

2007; Tonooka et al. 2005). 

 The T-based method becomes increasingly more difficult for sensor's with coarser spatial 

resolutions (e.g. MODIS 1km) over land where surface emissivities become spatially and 
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spectrally more variable. For example, at the ASTER pixel scale (90 m), depending on the 

homogeneity of the surface, several radiometer measurements are required over the land surface 

being measured to account for LST variability which could vary by as much as 10 K over a few 

meters (Coll et al. 2009a). Point measurements from flux towers or radiometer measurements 

exist but are not fully representative of the surrounding surface variability at coarse spatial 

scales. Researchers are investigating upscaling techniques from in situ to satellite LST 

measurements, for example by using the Soil Moisture Monitoring - land surface model 

(SETHYS) (Coudert et al. 2006; Guillevic et al. 2012).  However, the fact remains that 

validating satellite LST data at  >1km scale with in situ data over land  remains a big challenge 

due to surface temperature variability that depends on many factors including season, time of 

day, surface type and meteorological conditions.  

 
 

Figure 22. An example of the T-based validation results at Lake Tahoe cal/val site showing scatterplot between 

the MYD11 and MYD21 LST products and in situ radiometer measurements from 2003-2005. Both the TES 

and split-window products have similar accuracy in terms of bias and RMSE at this site. 
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