Agricultural Applications of ET

Andrew French¹, Charles A. Sanchez², Douglas Hunsaker¹, Paul Brown², Dawit Zerihun², Clinton Williams¹, Eduardo Bautista¹

1. U.S. Arid Land Agricultural Research Center, USDA/ARS, Maricopa
2. University of Arizona, Tucson
The Colorado River Valleys of Southern Arizona and California represent more than 700,000 acres (280,000 ha) of irrigated cropland. This region produces more than 95% of the nation’s vegetables during the fall-winter-spring season each year. Many of the water rights on the lower Colorado have high seniority. Colorado River resources are over-subscribed. USBR is responsible for delivering water, managing salinity, and meeting US/Mexico treaty obligations. Remote sensing of ET has a role in assessing current water use and helping to manage water in the future.
Irrigation Districts for the Yuma Arizona Region

- Bard Water District
- North Gila Irrigation District
- Yuma Irrigation District (Or South Gila)
- Yuma Mesa I&DD
- Unit B Irrigation District
- Yuma County Water Users Association
- Wellton-Mohawk I&DD
Declining Irrigation Water Deliveries to Yuma County Farms

The chart shows the decline in irrigation water deliveries to Yuma County farms from 1970 to 2010. The y-axis represents water deliveries in acre feet, and the x-axis represents years from 1970 to 2010. The chart compares gross delivery to farms and delivery per acre. The trend indicates a significant decrease in water deliveries over the years.
Improved Water Management

- Laser leveling
- Concrete lined ditches
- High turnout gates
- Sprinkler irrigation
- Length of irrigation runs, furrow geometry, and manipulation of cutoff distance and time
- Cropping system shifts
Yuma County Crop Production Shift to Vegetables
Irrigable Acres in Yuma County Dedicated to Multi-Crops Increased 5x since 1970
Water Conservation by Reducing Summer Month Cropping
Improved Water Management Practice: Flood -> Sprinkler

The water intensive practice of “subbing” up vegetables by maintaining water in field furrows for 7-10 days has been replaced by sprinkler irrigation.
Farm Management Practices have Increased Application & Crop Water Use Efficiencies from ~55% to ~75%

Application Efficiency: Crop ET/Water Applied

WUE: Crop Yield/Water Applied

All Crops

Lettuce
Elements of Irrigation and the Role of ET Monitoring

- Irrigation Scheduling: Timing and Required Depth
- Adjustment of Required Depth for Salt Management (Leaching)
- Irrigation Design and Management (Efficient & Uniform Application of Required Depth)
- Accuracy of water usage still a major question
Role of Remote Sensing of ET for Agriculture

• ET models can reasonably estimate seasonal water use
• Crop & region specific water use values for irrigation district management
• Useful remote sensing of ET needs to be at daily time steps, <100m resolution, and accessible to farmers and their advisors.
Agricultural Applications of ET

- ET uses/losses are the single largest unmeasured water flux
- New, updated water use baselines needed in the US Southwest
 - Scarcity & Farm vs. Urban Users
 - Salinity management
- Knowledge of ET would improve in-season forecasting of water requirements
- ET-based tools would be used if accurate, consistent, and easy-to use
Temperature Responses vs. Water Deficits

Temperature vs. Time of Day

Surface-Air Temperature Difference vs. Time of Day