Agricultural Applications of ET

Andrew French¹, Charles A. Sanchez², Douglas Hunsaker¹, Paul Brown², Dawit Zerihun², Clinton Williams¹, Eduardo Bautista¹

1. U.S. Arid Land Agricultural Research Center, USDA/ARS, Maricopa 2. University of Arizona, Tucson

Situation

- The Colorado River Valleys of Southern Arizona and California And the Imperial and Coachella Valleys of California represent more Than 700, 000 acres (280,000 ha) of irrigated cropland
- This region produces more than 95% of the nation's vegetables During the fall-winter-spring season each year.
- Many of the water rights on the lower Colorado have high seniority
- Colorado River resources over-subscribed
- USBR is responsible for delivering water, managing salinity, and meeting US/Mexico treaty obligations
- Remote sensing of ET has a role in assessing current water use & helping to manage water in the future.

Coachella Valley

1000

wer Colorado River Valley

Imperial Valley

Irrigation Districts for the Yuma Arizona Region

Declining Irrigation Water Deliveries to Yuma County Farms

Improved Water Management

- Laser leveling
- Concrete lined ditches
- High turnout gates
- Sprinkler irrigation
- Length of irrigation runs, furrow geometry, and manipulation of cutoff distance and time
- Cropping system shifts

Yuma County Crop Production Shift to Vegetables

Irrigable Acres in Yuma County Dedicated to Multi-Crops Increased 5x since 1970

Water Conservation by Reducing Summer Month Cropping

Improved Water Management Practice: Flood -> Sprinkler

The water intensive practice of "subbing" up vegetables by maintaining water in field furrows for 7-10 days has been replaced by sprinkler irrigation

Farm Management Practices have Increased Application & Crop Water Use Efficiencies from ~55% to ~75%

Application Efficiency: Crop ET/Water Applied

Head Lettuce WUE (LBS./Acre-inch

WUE: Crop Yield/Water Applied

All Crops

Lettuce

Elements of Irrigation and the Role of ET Monitoring

- Irrigation Scheduling: Timing and Required Depth
- Adjustment of Required Depth for Salt Management (Leaching)
- Irrigation Design and Management (Efficient & Uniform Application of Required Depth
- Accuracy of water usage still a major question

Role of Remote Sensing of ET for Agriculture

VI-Based ET

CAIDD Example Crop Phenology from Remote Sensing

0.2 0.4 0.6 0.8 1.0

Crop Classification

LST Maps

Cumulative Water Used

- ET models can reasonably estimate seasonal water use
- Crop & region specific water use values for irrigation district management
- Useful remote sensing of ET needs to be at daily time steps, <100m resolution, and accessible to farmers and their advisors.

Agricultural Applications of ET

- ET uses/losses are the single largest unmeasured water flux
- New, updated water use baselines needed in the US Southwest
 - Scarcity & Farm vs. Urban Users
 - Salinity management
- Knowledge of ET would improve in-season forecasting of water requirements
- ET-based tools would be used if accurate, consistent, and easy-to use

Temperature Responses vs. Water Deficits

Temperature vs. Time of Day

Surface-Air Temperature Difference vs. Time of Day