
ECOsystem Spaceborne Thermal
Radiometer Experiment on Space Station

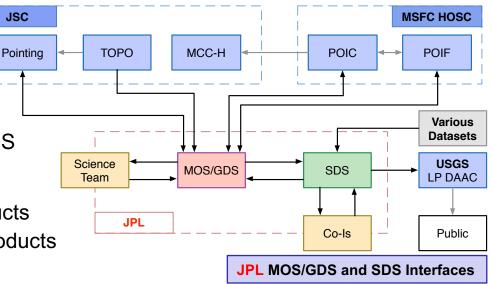
Mission System Overview

Jordan Padams, Eugene Chu, Dana Freeborn, Hyun Lee, Thomas Logan, Mike Smyth

May 1, 2018

Mission System Overview

Mission Operations

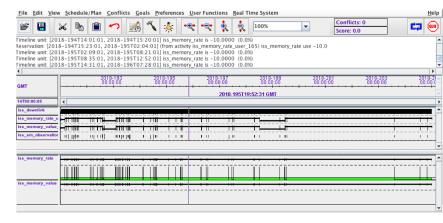

- Monitor and operate ECOSTRESS during:
 - Integration and Test (EGSE/GDS delivered to I&T to "test as you fly")
 - In-Orbit Checkout
 - Nominal operations
- Science observations will be planned and uplinked weekly
 - Time-based data collection planned based on ISS TOPO/Pointing Office data
 - Downlink planned based on schedule from ISS Data Management Coordinator

Ground Data System

- Command/Telemetry processing
- Sequence validation
- Manage HOSC software tools
- Data delivery to subsystems and SDS

Science Data System

- Create L0, L1, and L2 science products
- Catalog and store L0–L4 science products
- Data delivery to USGS LP DAAC


Science Planning Software

- Adaptation of CLASP demonstrated for basic ECOSTRESS observation scheduling
 - CLASP used for IPEX and many studies, in use for NISAR
 - Accounts for varying priority geographic target areas
 - CONUS mapping, regional, global mapping
 - Fluxnet Cal sites
 - Targets of opportunity (volcanic activity, etc.)
 - Models data volume restrictions

Coverage display 7/10/2018 – 7/23/2018

Timeline Display

Week In The Life –Science Planning

Weekly ATS

Generate Absolute
Time Sequence
and Uplink to
Payload

Daily ATS

Generate Updated
Absolute Time
Sequence and
Uplink to Payload

ATS = Absolute Time Sequence

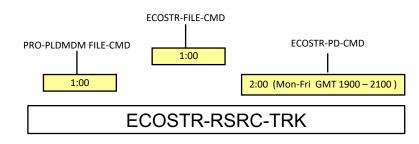
Week In The Life – Science Planning

- Weekly ATS Generation Process
 - On Tuesday, process begins (TOPO)
 - On Wednesday, uplink and enable 14-day ATS
 - On Thursday, <u>new</u> 14-day ATS begins

	May 2018							
Sun	Mon Tue		Wed	Thu	Fri	Sat		
29	30	01	02	03	04	05		
				ATS_01	ATS_02	ATS_03		
06	07	08	09	10	11	12		
ATS_04	ATS_05	ATS_06	ATS_07	ATS_01	ATS_02	ATS_03		
13	14	15	16	17	1,8	··.19		
ATS_04	ATS_05	ATS_06	ATS_07	ATS_08	ATS_09	ATS_10		
20	21	2,2	23	24	25	26		
ATS_11	ATS_12	ATS_13	ATS_14	placed on nor	ninal			

Note: Animation present

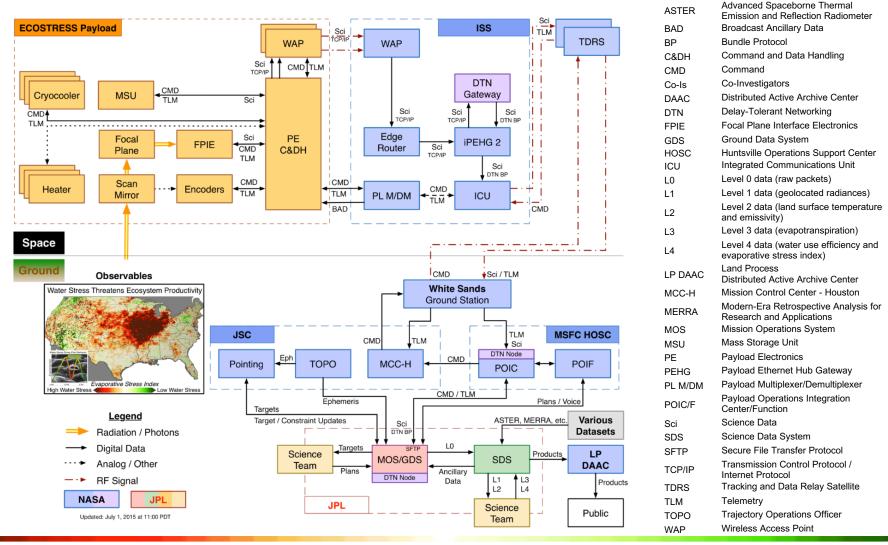
Week In The Life – Science Planning



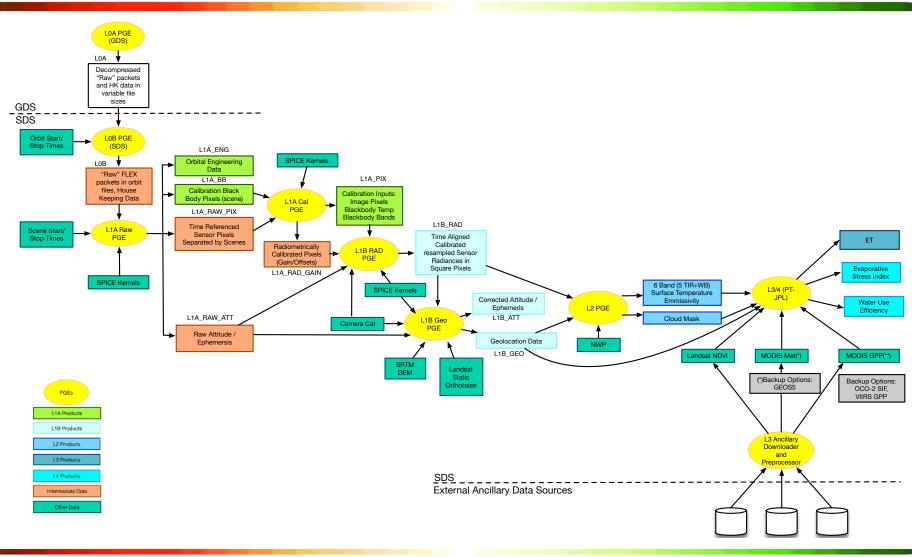
Daily ATS Process

- Regenerates science observation, or downlink window ATS sequences, primarily in response to ISS changes (e.g. attitude and orbit or downlink window).
- Give the flexibility for opportunistic science / disaster response (no formal requirements or plans).
- Same as the weekly process, though fewer ATS sequences will be generated, reviewed, and uplinked.

Daily ATS Generate Updated Absolute Time Sequence and Uplink to Payload


HOSC Payload Planning Outline

ECOSTRESS End-to-End Information System



L1 – L4 Product Generation

ECOSTRESS Standard Science Data Products

Product	Dimensions (cross x along x bands)		File Size (MB)	Description	
L1B_RAD	5400	5632	6	939	Calibrated at-sensor radiances
L1B_GEO	5400	5632	1	1609	Geolocation tags, sun angles, and look angles, and calibrated, resampled at-sensor radiances
L1B_ATT	12	52	1	0.5	Corrected spacecraft ephemeris and attitude data
L2_LSTE	5,400	5,632	5+W	536	Land surface temperature and emissivity
L2_CLOUD	5,400	5,632	1	67	Cloud mask
L3_L4_QA	5,400	5,632	24	1609	24*16 bitmasks of L3/L4 ancillary data quality flags
L3_ET_PT-JPL	5,400	5,632		671	Evapotranspiration retrieved from L2_LSTE using the PT-JPL Algorithm
L4_ESI_PT-JPL	5,400	5,632		268	Evaporative stress index generated with PT-JPL
L4_WUE	5,400	5,632		134	Water use efficiency
L3_ET_ALEXI-USDA	3,000	3,000		99	Evapotranspiration generated by USDA using the ALEXI/DisALEXI Algorithm
L4_ESI_ALEXI-USDA	3,000	3,000		119	Evaporative Stress Index generated by USDA with ALEXI/DisALEXI

Science Operations Scenarios And Data Availability

During IOC

- Autonomous 24/7 Forward Processing
- Perform Radiometric Calibration and Geolocation Validation
- On Demand Reprocessing as requested by the Instrument and Science Teams

During Science Operations

- Autonomous 24/7 Forward Processing
- On Demand Reprocessing as requested by the PI and Science Team

Science Operations + 6 months

- Autonomous 24/7 Forward Processing
- Bulk Reprocessing of first 6 months of data in parallel with Forward Processing
- On Demand Reprocessing as requested by the PI and Science Team

Standard Science Data Product Archival and Availability

- All standard science data products will be archived at the LP DAAC
- Science data products to be publicly available 6 months after IOC
- In addition, LP DAAC will provide early access (< IOC + 6 months) for external science team members and other research and applied science collaborators

Questions?

jordan.h.Padams@jpl.nasa.gov

Backup

ECOSTRESS Science Data Products (1/2)

PGE or <source/>	Product	Dimensions (cross x along x bands)		File Size (MB)	Description	
<from gds=""></from>	L0A_FLEX	5,528	11,264	6	853	Level 0 "raw" spacecraft packets
	L0A_HK	2560	54	1	0.25	Raw instrument housekeeping packets including attitude, ephemeris and BB temps
LOB	LOB	5528	11264	6	Up to 13G	Raw instrument FLEX, housekeeping, and other ancillary packets chronologically sorted and assembled into orbits. INTERMEDIATE
L1A Raw	L1A_ENG	1	54	7	.333	Spacecraft and instrument engineering data, including blackbody gradient coefficients
	L1A_BB	128	11,264	6	19	Instrument blackbody calibration pixels
	L1A_Raw_PIX	5,400	11,264	6	766	Raw pixels separated by pixel frame INTERMEDIATE
	L1A_Raw_ATT	1	5400	1	0.5	Attitude from 1 Hz spacecraft BAD and housekeeping data INTERMEDIATE
L1A Cal	L1A_PIX	5,400	11,264	6	805	Raw pixel data with appended calibration coefficients
	L1A_RAD_GAIN	5,400	11,264	6	5237	Radiometric gains offsets and optionally calibrated radiances and temperatures (K)

ECOSTRESS Science Data Products (2/2)

PGE or <source/>	Product	Dimensions (cross x along x bands)		File Size	Description	
L1B Rad	L1B RAD	5400	5632	6	(MB) 939	Calibrated at-sensor radiances
L1B Geo	L1B_GEO	5400	5632	1	1609	Geolocation tags, sun angles, and look angles, and calibrated, resampled at-sensor radiances
	L1B_ATT	12	52	1	0.5	Corrected spacecraft ephemeris and attitude data
L2	L2_LSTE	5,400	5,632	5+W	536	Land surface temperature and emissivity
	L2_CLOUD	5,400	5,632	1	67	Cloud mask
L3/4 Preprocessor	L3_L4_QA	5,400	5,632	24	1609	24*16 bitmasks of L3/L4 ancillary data quality flags
L3/4 PT-JPL	L3_ET_PT-JPL	5,400	5,632		671	Evapotranspiration retrieved from L2_LSTE using the PT-JPL Algorithm
	L4_ESI_PT-JPL	5,400	5,632		268	Evaporative stress index generated with PT-JPL
	L4_WUE	5,400	5,632		134	Water use efficiency
<from usda=""></from>	L3_ET_ALEXI- USDA	3,000	3,000		99	Evapotranspiration generated by USDA using the ALEXI/DisALEXI Algorithm
	L4_ESI_ALEXI- USDA	3,000	3,000		119	Evaporative Stress Index generated by USDA with ALEXI/DisALEXI