Mission System Overview

Jordan Padams, Eugene Chu, Dana Freeborn, Hyun Lee, Thomas Logan, Mike Smyth

May 1, 2018
Mission System Overview

Mission Operations
• Monitor and operate ECOSTRESS during:
 – Integration and Test (EGSE/GDS delivered to I&T to “test as you fly”)
 – In-Orbit Checkout
 – Nominal operations
• Science observations will be planned and uplinked weekly
 – Time-based data collection planned based on ISS TOPO/Pointing Office data
 – Downlink planned based on schedule from ISS Data Management Coordinator

Ground Data System
• Command/Telemetry processing
• Sequence validation
• Manage HOSC software tools
• Data delivery to subsystems and SDS

Science Data System
• Create L0, L1, and L2 science products
• Catalog and store L0–L4 science products
• Data delivery to USGS LP DAAC
Science Planning Software

• Adaptation of CLASP demonstrated for basic ECOSTRESS observation scheduling
 – CLASP used for IPEX and many studies, in use for NISAR
 – Accounts for varying priority geographic target areas
 ▪ CONUS mapping, regional, global mapping
 ▪ Fluxnet Cal sites
 ▪ Targets of opportunity (volcanic activity, etc.)
 – Models data volume restrictions

Coverage display 7/10/2018 – 7/23/2018
Timeline Display

This document has been reviewed and determined not to contain export controlled technical data.
Weekly ATS

Generate Absolute Time Sequence and Uplink to Payload

Daily ATS

Generate Updated Absolute Time Sequence and Uplink to Payload

ATS = Absolute Time Sequence
Weekly ATS Generation Process

- On *Tuesday*, **process begins** (TOPO)
- On *Wednesday*, **uplink** and **enable** 14-day ATS
- On *Thursday*, **new** 14-day ATS begins
Daily ATS Process

- Regenerates science observation, or downlink window ATS sequences, primarily in response to ISS changes (e.g. attitude and orbit or downlink window).

- Give the flexibility for *opportunistic* science / disaster response (no formal requirements or plans).

- Same as the weekly process, though fewer ATS sequences will be generated, reviewed, and uplinked.

Daily ATS

Generate Updated Absolute Time Sequence and Uplink to Payload

HOSC Payload Planning Outline

- PRO-PLDMEM FILE-CMD
- ECOSTR-FILE-CMD
- ECOSTR-PD-CMD
- ECOSTR-RSRC-TRK
ECOSTRESS End-to-End Information System

Legend:
- Radiation / Photons
- Digital Data
- Analog / Other
- RF Signal
- NASA
- JPL

Water Stress Threatens Ecosystem Productivity

High Water Stress
Low Water Stress

Legend:
- Radiation / Photons
- Digital Data
- Analog / Other
- RF Signal
- NASA
- JPL

This document has been reviewed and determined not to contain export controlled technical data.
L1 – L4 Product Generation

Slide 8
ECOSTRESS Standard Science Data Products

<table>
<thead>
<tr>
<th>Product</th>
<th>Dimensions (cross x along x bands)</th>
<th>File Size (MB)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1B_RAD</td>
<td>5400 x 5632 x 6</td>
<td>939</td>
<td>Calibrated at-sensor radiances</td>
</tr>
<tr>
<td>L1B_GEO</td>
<td>5400 x 5632 x 1</td>
<td>1609</td>
<td>Geolocation tags, sun angles, and look angles, and calibrated, resampled at-sensor radiances</td>
</tr>
<tr>
<td>L1B_ATT</td>
<td>12 x 52 x 1</td>
<td>0.5</td>
<td>Corrected spacecraft ephemeris and attitude data</td>
</tr>
<tr>
<td>L2_LSTE</td>
<td>5,400 x 5,632 x 5+W</td>
<td>536</td>
<td>Land surface temperature and emissivity</td>
</tr>
<tr>
<td>L2_CLOUD</td>
<td>5,400 x 5,632 x 1</td>
<td>67</td>
<td>Cloud mask</td>
</tr>
<tr>
<td>L3_L4_QA</td>
<td>5,400 x 5,632 x 24</td>
<td>1609</td>
<td>24*16 bitmasks of L3/L4 ancillary data quality flags</td>
</tr>
<tr>
<td>L3_ET_PT-JPL</td>
<td>5,400 x 5,632</td>
<td>671</td>
<td>Evapotranspiration retrieved from L2_LSTE using the PT-JPL Algorithm</td>
</tr>
<tr>
<td>L4_ESI_PT-JPL</td>
<td>5,400 x 5,632</td>
<td>268</td>
<td>Evaporative stress index generated with PT-JPL</td>
</tr>
<tr>
<td>L4_WUE</td>
<td>5,400 x 5,632</td>
<td>134</td>
<td>Water use efficiency</td>
</tr>
<tr>
<td>L3_ET_ALEXI-USDA</td>
<td>3,000 x 3,000</td>
<td>99</td>
<td>Evapotranspiration generated by USDA using the ALEXI/DisALEXI Algorithm</td>
</tr>
<tr>
<td>L4_ESI_ALEXI-USDA</td>
<td>3,000 x 3,000</td>
<td>119</td>
<td>Evaporative Stress Index generated by USDA with ALEXI/DisALEXI</td>
</tr>
</tbody>
</table>
Science Operations Scenarios And Data Availability

During IOC
- Autonomous 24/7 Forward Processing
- Perform Radiometric Calibration and Geolocation Validation
- On Demand Reprocessing as requested by the Instrument and Science Teams

During Science Operations
- Autonomous 24/7 Forward Processing
- On Demand Reprocessing as requested by the PI and Science Team

Science Operations + 6 months
- Autonomous 24/7 Forward Processing
- Bulk Reprocessing of first 6 months of data in parallel with Forward Processing
- On Demand Reprocessing as requested by the PI and Science Team

Standard Science Data Product Archival and Availability
- All standard science data products will be archived at the LP DAAC
- Science data products to be publicly available 6 months after IOC
- In addition, LP DAAC will provide early access (< IOC + 6 months) for external science team members and other research and applied science collaborators
Questions?

jordan.h.Padams@jpl.nasa.gov
ECOSTRESS Science Data Products (1/2)

<table>
<thead>
<tr>
<th>PGE or <Source></th>
<th>Product</th>
<th>Dimensions (cross x along x bands)</th>
<th>File Size (MB)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><from GDS></td>
<td>L0A_FLEX</td>
<td>5,528 11,264 6</td>
<td>853</td>
<td>Level 0 “raw” spacecraft packets</td>
</tr>
<tr>
<td></td>
<td>L0A_HK</td>
<td>2560 54 1</td>
<td>0.25</td>
<td>Raw instrument housekeeping packets including attitude, ephemeris and BB temps</td>
</tr>
<tr>
<td>L0B</td>
<td>L0B</td>
<td>5528 11264 6</td>
<td>Up to 13G</td>
<td>Raw instrument FLEX, housekeeping, and other ancillary packets chronologically sorted and assembled into orbits.</td>
</tr>
<tr>
<td></td>
<td>L1A_ENG</td>
<td>1 54 7 .333</td>
<td></td>
<td>Spacecraft and instrument engineering data, including blackbody gradient coefficients</td>
</tr>
<tr>
<td></td>
<td>L1A_BB</td>
<td>128 11,264 6</td>
<td>19</td>
<td>Instrument blackbody calibration pixels</td>
</tr>
<tr>
<td></td>
<td>L1A_Raw_PIX</td>
<td>5,400 11,264 6</td>
<td>766</td>
<td>Raw pixels separated by pixel frame</td>
</tr>
<tr>
<td></td>
<td>L1A_Raw_ATT</td>
<td>1 5400 1 0.5</td>
<td></td>
<td>Attitude from 1 Hz spacecraft BAD and housekeeping data</td>
</tr>
<tr>
<td>L1A Cal</td>
<td>L1A_PIX</td>
<td>5,400 11,264 6</td>
<td>805</td>
<td>Raw pixel data with appended calibration coefficients</td>
</tr>
<tr>
<td></td>
<td>L1A_RAD_GAIN</td>
<td>5,400 11,264 6</td>
<td>5237</td>
<td>Radiometric gains offsets and optionally calibrated radiances and temperatures (K)</td>
</tr>
</tbody>
</table>
ECOSTRESS Science Data Products (2/2)

<table>
<thead>
<tr>
<th>PGE or <Source></th>
<th>Product</th>
<th>Dimensions (cross x along x bands)</th>
<th>File Size (MB)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1B Rad</td>
<td>L1B_RAD</td>
<td>5400 5632</td>
<td>6</td>
<td>939 Calibrated at-sensor radiances</td>
</tr>
<tr>
<td>L1B Geo</td>
<td>L1B_GEO</td>
<td>5400 5632</td>
<td>1</td>
<td>1609 Geolocation tags, sun angles, and look angles, and calibrated, resampled at-sensor radiances</td>
</tr>
<tr>
<td></td>
<td>L1B_ATT</td>
<td>12 52</td>
<td>0.5</td>
<td>0.5 Corrected spacecraft ephemeris and attitude data</td>
</tr>
<tr>
<td>L2</td>
<td>L2_LSTE</td>
<td>5,400 5,632</td>
<td>5+W</td>
<td>536 Land surface temperature and emissivity</td>
</tr>
<tr>
<td></td>
<td>L2_CLOUD</td>
<td>5,400 5,632</td>
<td>1</td>
<td>67 Cloud mask</td>
</tr>
<tr>
<td>L3/4 Preprocessor</td>
<td>L3_L4_QA</td>
<td>5,400 5,632</td>
<td>24</td>
<td>1609 24*16 bitmasks of L3/L4 ancillary data quality flags</td>
</tr>
<tr>
<td>L3/4 PT-JPL</td>
<td>L3_ET_PT-JPL</td>
<td>5,400 5,632</td>
<td></td>
<td>671 Evapotranspiration retrieved from L2_LSTE using the PT-JPL Algorithm</td>
</tr>
<tr>
<td></td>
<td>L4_ESI_PT-JPL</td>
<td>5,400 5,632</td>
<td></td>
<td>268 Evaporative stress index generated with PT-JPL</td>
</tr>
<tr>
<td></td>
<td>L4_WUE</td>
<td>5,400 5,632</td>
<td></td>
<td>134 Water use efficiency</td>
</tr>
<tr>
<td><from USDA></td>
<td>L3_ET_ALEXI-USDA</td>
<td>3,000 3,000</td>
<td></td>
<td>99 Evapotranspiration generated by USDA using the ALEXI/DisALEXI Algorithm</td>
</tr>
<tr>
<td></td>
<td>L4_ESI_ALEXI-USDA</td>
<td>3,000 3,000</td>
<td></td>
<td>119 Evaporative Stress Index generated by USDA with ALEXI/DisALEXI</td>
</tr>
</tbody>
</table>