ECOSTRESS METRIC
EVAPOTRANSPERSION ALGORITHM

Rick Allen, University of Idaho-Kimberly
Ayse Kilic, University of Nebraska-Lincoln

Members of the Landsat Science Team 2007-2017

EcoSTRESS Science Support

Support:

Ricardo Trezza, Univ. Idaho
Clarence Robison, Univ. Idaho
Philip Blankenau, Univ. Nebraska-Lincoln
Samuel Ortega, Univ. Nebraska-Lincoln

2017 EcoSTRESS Workshop, Davis, CA
ET is needed at the field scale and for historical and present...
ET features at 30 m resolution

April – October, 2006 ET from METRIC-Landsat

25 km

ET (mm)

0
300
600
900
1200
1500
Close up Orbit -- 420 km

International Space Station
METRIC/EEFLUX-ECOSTRESS

Porting Algorithms
EEFlux – Landsat-based (30 m) ET mapping on Google Earth Engine
Orbital speed
17000 mph
7660 meters/second
Altitude: 420 km

Sun angle continually changing.
Land / precipitation conditions continually changing.
Rotate Calibration Window to Equalize Sun Angle and Time of Warming.
CALIBRATION OF METRIC/EEFLUX:

\[\text{bias}_{R_n-G} \rightarrow \text{bias}_{H-cal} \rightarrow \text{bias}_{dT} \rightarrow \text{bias}_{H\text{-pixel}} \rightarrow \text{LE} \]

The Sensible Heat (H) Function with end-member LST calibration **calibrates around** Biases in many of the Energy balance components:

(Biases exist in: net radiation, soil heat flux, aerodynamic stability, aerodynamic roughness, absolute surface temperature, atmospheric correction)

\[H = R_n - G - \text{LE} \]
\[\text{LE} = R_n - G - H \]

any biases

(for calibration)

(during application)

Biases cancel out

unbiased
Topography of the United States and World is Complex – impacting solar radiation balance.

METRIC includes radiation algorithms for slopes and terrain roughness algorithms.
Data Sources

Albedo and Vegetation Indices

• From Landsat, Sentinel II Images Closest/Bracketed in time

Wind Speed, Humidity, Reference ET

• From CFSV2 or GLDAS2 Gridded Weather Data

Science Questions

• How does the ET_rF (ET as a fraction of Reference ET) vary space-wise during the day for:
 • Irrigated Crops
 • Rainfed Crops
 • Riparian Systems
 • Rangeland
 • Forest
• How does variation in ET_rF impact time-integrated ET estimation (which often assumes constant ET_rF)?
Student/Post-Graduate Collaboration

- Assist Technical Staff and Faculty in development of strategies and coding and testing of algorithms for applying a moving window-based calibration scheme to develop endmember based calibration points for the surface energy balance employed in the METRIC ET process.
- Automated calibration of EEFlux surface energy balance.
- Algorithm testing using an archive of METRIC-based ET imagery from Landsat-based processing since 2000.
- Two NSF-supported energy and CO$_2$ flux systems in Idaho for testing the moving window-based calibration for sagebrush and lodgepole pine.
- Applications to other targeted sites by ECOSTRESS teams.
- Collaborative ingestion by Idaho, Nebraska and California state Departments of Water Resources to explore ingestion of ET data into their water operations.
Ground Data - Island Park, Idaho
Lodgepole Pine
- Installed 2010 – Univ. Idaho

South Tower Looking North towards North Tower
6 km SW of Macks Inn
Island Park, Idaho – Eddy Covariance Energy Balance corrected using Large Aperture Scintillometer (UI student John Stewart)
Hollister Sage Brush site
– Installed Feb. 2010

Best combination of 16 Soil Heat Flux sites optimized by UI student Jeremy Greth

“Sensor Redundancy”

3 3-D sonic anemometers
1 LiCor 7500 H2O/CO2 Infrared A.
3 Net radiometers
1 Scintec BLS900 Scintillometer
16 Soil Heat Flux Sensors
32 Soil Temperature Sensors
20 Soil Water Content Sensors
7 Soil Water Potential Sensors
2 Rain Gages
2 Infrared Temperature Sensors

Scintec LAS transmitter
Nighttime Spikes are numerical artifacts

August after Wetting Event:
Three Sonic’s
Two LE’s

One and two days following rain

LE from LAS as residual agrees well with LE from Eddy Covariance
Gridded Weather Comparisons with Agricultural Measurements: Alfalfa Reference ET (ET_r)

Philip Blankenau, MS Student, UNL – Dr. Ayse Kilic, Advisor
Best Gridded Data sets for Least Bias in Reference ET (ET_r)

Best Analysis Data Set for ET_r in Summer by KGE
- CFSv2
- GLDAS
- GRIDMET
- NLDAS
- No Data

Philip Blankenau, MS Student, UNL – Dr. Ayse Kilic, Advisor
Best Gridded Data sets for Least Bias in Reference ET (ET_r)
Daily water balance using gridded weather and precipitation

EcoEEFlux will use bare soil evaporation from CFSV2 or GLDAS

Background Evaporation for Calibration
Importance of “pre” Resampling and Projection of Large Pixels → Smaller Pixels
Residential Water Use
Google Earth Engine App for Residential Water Use and Preservation --- --- GEARUP

Beta versions are available

http://appgearup.appspot.com

Development Team:
Doruk Ozturk, UNL
Samuel Ortega-Salazar, UNL / Univ. Talca, Chile
Dr. Ayse Kilic, UNL
Dr. Richard Allen, Univ. Idaho
Dr. Tyler Erickson, Google, Inc.
A Tool For Smarter Lawn Irrigation

- Help homeowners manage water applications for their lawn
- Designed for the whole Continental United States (CONUS)
- Beta version: http://appgearup.appspot.com/
- Link to YouTube video that shows calibration of NAIP with LANDSAT: https://www.youtube.com/watch?v=9aV8vdu8Tu0
Current Interest in GEARUP

- **Metropolitan Water District of Southern California**
 - Help Home-Owners schedule lawn watering (targets: 80+ year olds)
 - Conversion of Residential Turf to Artificial Turf
 - Transfer of Agricultural Water to Cities
 - Linking EEFlux to GEARUP for NAIP 1m Scale ET

- **Potential Use in Agriculture**
 - Conversion of Landsat 30 m to 1 m (with limitations)
 - Use ETref and Precipitation forecasting for scheduling irrigation
Basic Problem

- NAIP (National Agriculture Imaging Program) images have 1.0 meter spatial resolution and are necessary to “see” residential areas (this is good)
- NAIP imagery is ingested onto Google Earth Engine (this is good)
- However, NAIP does not report “reflectance” (ρ) (this is bad)
- NAIP imagery is collected only once per year or 3 years (this is bad)
- NAIP only reports uncalibrated, raw “digital numbers” (DN) that range from 0 to 255 (2^8 (8 bit values)) (this is bad)
- Therefore, to calculate NDVI, we must first calibrate NAIP DN’s to “reflectance.”
- We do this using Landsat reflectance
- Landsat has 30 meter spatial resolution and reflectance
 - (too large for residential work, but OK to calibrate NAIP)
Calibration of NAIP with Landsat
Calibration of NAIP

NAIP surface reflectance

\[\text{NAIP} = a + b \times \text{DN} \]
Data flow for GEARUP App

INPUT

- **Soil**
 - Available Water Capacity
 - Soil Type

- **Vegetation**
 - NAIP
 - Landscape Coef. (KL)

- **Weather**
 - RTMA
 - NDFD

OUTPUT

- Allowable Dryness
- Est. Runoff

- Hydrology
- ET
- Reference ET
- Precip

- Recommended Irrigation Schedule

RTMA = Real-Time Mesoscale Analysis Weather (last 7 days)

NDFD = National Digital Weather Forecast Database (next 7 days)
Click on the buttons below to see your products on the map.

- BASE MAP
- SOURCE IMAGE (NAIP)
- SOURCE IMAGE (NAIP FALSE COLOR)
- CLASSIFICATION
- NAIP NDVI LANDSAT ADJUSTED
- NAIP NDVI TEMPORAL LANDSAT ADJUSTED
- LANDSCAPE COEFFICIENT
- TEMPERATURE
- WATER CONSUMPTION
- IRRIGATION SCHEDULE

Customize

If you do not want to provide input, go ahead and click on the "Irrigation Schedule" button to use our default values.

Please provide water meter readings:

Before Running One Cycle After Running One Cycle
Click on the buttons below to see your products on the map.

- BASE MAP
- SOURCE IMAGE (NAIP)
- SOURCE IMAGE (NAIP FALSE COLOR)
- CLASSIFICATION
- NAIP NDVI LANDSAT ADJUSTED
- NAIP NDVI TEMPORAL LANDSAT ADJUSTED
- LANDSCAPE COEFFICIENT
- TEMPERATURE
- WATER CONSUMPTION
- IRRIGATION SCHEDULE

Customize

If you do not want to provide input, go ahead and click on the "Irrigation Schedule" button to use our default values.

Please provide water meter readings:

- Before Running One Cycle
- After Running One Cycle
Click on the buttons below to see your products on the map.

- BASE MAP
- SOURCE IMAGE (NAIP)
- SOURCE IMAGE (NAIP FALSE COLOR)
- CLASSIFICATION
- NAIP NDVI LANDSAT ADJUSTED
- NAIP NDVI TEMPORAL LANDSAT ADJUSTED
- LANDSCAPE COEFFICIENT
- TEMPERATURE
- WATER CONSUMPTION
- IRRIGATION SCHEDULE

Customize

If you do not want to provide input, go ahead and click on the "Irrigation Schedule" button to use our default values.

Please provide water meter readings:
Click on the buttons below to see your products on the map.

- BASE MAP
- SOURCE IMAGE (NAIP)
- SOURCE IMAGE (NAIP FALSE COLOR)
- CLASSIFICATION
- NAIP NDVI LANDSAT ADJUSTED
- NAIP NDVI TEMPORAL LANDSAT ADJUSTED
- LANDSCAPE COEFFICIENT
- TEMPERATURE
- WATER CONSUMPTION
- IRRIGATION SCHEDULE

Customize

If you do not want to provide input, go ahead and click on the "Irrigation Schedule" button to use our default values.

Please provide water meter readings:
Click on the buttons below to see your products on the map.

- BASE MAP
- SOURCE IMAGE (NAIP)
- SOURCE IMAGE (NAIP FALSE COLOR)
- CLASSIFICATION
- NAIP NDVI LANDSAT ADJUSTED
- NAIP NDVI TEMPORAL LANDSAT ADJUSTED
- LANDSCAPE COEFFICIENT
- TEMPERATURE
- WATER CONSUMPTION
- IRRIGATION SCHEDULE

Customize

If you do not want to provide input, go ahead and click on the "Irrigation Schedule" button to use our default values.

Please provide water meter readings:
Click on the buttons below to see your products on the map.

- BASE MAP
- SOURCE IMAGE (NAIP)
- SOURCE IMAGE (NAIP FALSE COLOR)
- CLASSIFICATION
- NAIP NDVI LANDSAT ADJUSTED
- NAIP NDVI TEMPORAL LANDSAT ADJUSTED
- LANDSCAPE COEFFICIENT
- TEMPERATURE
- WATER CONSUMPTION
- IRRIGATION SCHEDULE

Customize

If you do not want to provide input, go ahead and click on the "Irrigation Schedule" button to use our default values.

Please provide water meter readings:
Current Interest in GEARUP

- **Metropolitan Water District of Southern California**
 - Help Home-Owners schedule lawn watering (targets: 80+ year olds)
 - Conversion of Residential Turf to Artificial Turf
 - Transfer of Agricultural Water to Cities
 - Linking EEFlux to GEARUP for NAIP 1m Scale ET

- **Potential Use in Agriculture**
 - Conversion of Landsat 30 m to 1 m (with limitations)
 - Use ETref and Precipitation forecasting for scheduling irrigation
A Field-Scale "Earth-Selfie" Every Day

- Cost: Less than 3 coffee-latte's per American per year
- Support SIXTEEN Landsats in orbit
- DAILY Earth-Selfie’s

Consider:

- 99% of all Americans spend at least $10 per week on superfluous things: cafe-lattes; bottled water; movies; gasoline to motor three blocks to the market-place or across town to look for designer jeans.
- However, we don't want to spend the <$0.50 PER YEAR per American needed to launch and operate Landsats or similar that take field-scale 'selfies' of our Nation.
- Less than $6 per American PER YEAR would place SIXTEEN Landsats into orbit, giving us DAILY Selfies of the entire Nation.

Can you imagine what that would be like? A Landsat 'Selfie' EVERY DAY???
Thank you
Extra Slides