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Remote Sensing of 
ET Requires Co-
Incident NDVI

A major challenge in 
estimating evapotranspiration 
from ECOSTRESS surface 
temperature is the lack of co-
incident NDVI. 

Irrigated agriculture produces 
abrupt changes in the amount 
of vegetation on the ground 
during green-up and harvest.

If the most recent high-
resolution image of NDVI was 
acquired before agricultural 
changes and the surface 
temperature image was 
acquired after, this can result 
in significant error in ET.



Sentinel 2 generates atmospherically 
corrected, 10 m spatial resolution 
shortwave surface reflectance 
images every five days with 
alternating overpasses of the 
Sentinel 2A and 2B satellites. 
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Suomi NPP VIIRS generates the daily
VNP09GA atmospherically corrected 
surface reflectance product at 500 m
spatial resolution.



Sentinel 2
5-day 10 m

NDVI

VIIRS
Daily 500 m

NDVI

Spatially & Temporally Adaptive 
Remote Sensing (STARS) Data 

Fusion Model

STARS Daily 70 m NDVI for 
ECOSTRESS Evapotranspiration 

Processing

STARS
Daily 
Fine Resolution



Sentinel 2
5-day 10 m

NDVI

VIIRS
Daily 500 m

NDVI

Spatially & Temporally Adaptive 
Remote Sensing (STARS) Data 

Fusion Model

STARS Daily 70 m NDVI for 
ECOSTRESS Evapotranspiration 

Processing

STARS
Daily 
Fine Resolution

Landsat
16-day 30 m

NDVI



Challenges:
• Highly heterogeneous landcover/terrain
• Large gaps of missing data due to cloud cover and temporal resolution
• Massive, nonstationary spatiotemporal data
• Computational/temporal constraints, "streaming" data fusion

Existing Methods (non-exhaustive):
• STARFM and subsequent variants (e.g. Gao et al. 2006; Zhu et al. 2010)
• Unmixing-based methods (e.g. Gevaert, et al. 2011)
• Spatial/spatiotemporal statistical models (e.g. Nguyen, et al. 2012, 2014; Ma and 

Kang, 2020; Johnson, et al., 2020+)

Multi-sensor Data Fusion



Assume for a generic grid cell, G, the observed products are a, noisy spatial aggregate of the underlying 
true process:

• {𝜂!" ∶ 𝑖 ∈ 𝐷} is the latent spatial process on a discretized domain made up of 𝑁 fine-scale, non-
overlapping pixels

• Does not require images to be downscaled pre-fusion!

Instrument 1 Instrument 2 Truth

Spatiotemporal Statistical Data Fusion



Model the unknown, high-resolution product of interest, 𝜂!", as a spatiotemporal process. 

For each pixel, 𝑖, 

where 𝜔!" follow a conditionally 

autoregressive (CAR) model

Queen’s neighborhood Rook’s neighborhood 

Gap-filling through latent, spatiotemporal model



The estimate of a daily, high-resolution product is obtained as the posterior mean 
of the distribution 𝑝 𝜂! 𝑦!, 𝑦!"#…𝑦#).

Online fusion via Kalman Filtering Fast, moving window estimation

Fit fusion model to a local 
subset of pixels defined by a 
rook or queen neighborhood 
structure on the coarse 
image

Can exploit embarrassingly 
parallel computation, 
reduces computational cost 
from O(𝑛!") operations to 
O(𝑛#𝑚") -- linear in number 
of coarse resolution pixels

Fast Estimation via Local Kalman Filtering



Fast Estimation via Local Kalman Filtering

The estimate of a daily, high-resolution product is obtained as the posterior mean 
of the distribution 𝑝 𝜂! 𝑦!, 𝑦!"#…𝑦#).

Online fusion via Kalman Filtering Fast, moving window estimation

Fit fusion model to a local 
subset of pixels defined by a 
rook or queen neighborhood 
structure on the coarse 
image

Can exploit embarrassingly 
parallel computation, 
reduces computational cost 
from O(𝑛!") operations to 
O(𝑛#𝑚") -- linear in number 
of coarse resolution pixels



Example VIIRS-Sentinel 70m Data Fusion
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Example VIIRS-Sentinel 70m Data Fusion



Comparison of error from 5-day VIIRS assimilation on July 14, 2020.

Example VIIRS-Sentinel 70m Data Fusion



• Model parameterization
• Balance influence of VIIRS on composite image after multiple days with no new 

Sentinel image 
• Parameterize for implementation on albedo

• Computational cost
• Fusion of a 100km Sentinel-sized scene (~2.5 million pixels) takes between 10-30 min

• Incorporation of Landsat

• Evapotranspiration
• Processing high-resolution estimates of NDVI and albedo with ECOSTRESS LST to 

estimate evapotranspiration

Discussion/Future Data Fusion Work



Currently, ECOSTRESS ingests the (500m) GPP product from MODIS, which is combined
with the (70m) ECOSTRESS L3 ET to produce the L4 WUE product.

1. Objective 2: Improve the spatial resolution and accuracy of the L4 WUE product
through incorporation of the BESS GPP algorithm
• Update: The team is currently working incorporating a new GPP algorithm, but

do not have results to show as of yet.

ECOSTRESS data are provided as ISS ground-track swaths with separate files for
geolocation, which requires cumbersome downloading and reprojection of very large files
to produce useable rasters. On-the-fly analysis tools from the LP-DAAC, such as AppEEARS
are severely hindered.

1. Objective 3: Produce and deliver the new ECOSTRESS L2-4 data gridded in
GeoTIFF, enabling AppEEARS and other tools for analysis.
• Update: All new data products will be directly produced as GeoTIFFs.

Updates on Other Proposal Objectives
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