INVESTIGATING DYNAMIC THERMAL PROCESSES TO OPTIMIZE GEOTHERMAL HOTSPOT DETECTION

“USING ECOSTRESS TO EMPOWER THE ENERGY TRANSITION”

CHRIS HECKER, ROBERT HEWSON
ROBERT REEVES, EUNICE BONYO, THOMAS GROEN

ECOSTRESS WORKSHOP DECEMBER 1, 2020

UNIVERSITY OF TWENTE.

FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION
GEOTHERMAL SURFACE MANIFESTATIONS

GT surface manifestations:

Clay alteration (SWIR hyperspectral)

Structures (LiDAR DEM)

Surface hotspots (TIR)

=> Starting point for detailed exploration
ECOSTRESS TO THE RESCUE

- Ideal to test new approaches:
 - Precessing orbit (different acquisition times)
 - Diurnal time series
 - Suitable pixel size (<100m)
 - Swath

- Objective 1: Quantify effect overpass time on detections
- Objective 2: Optimize detections through use of time series
STUDY AREAS

Three areas with ground information, airborne TIR surveys and ground-based fumarole monitoring.
PROGRESS?

- COVID-19: Universities prioritize education
- Post-doc position funding (3 years; starting 2021)
- Study areas defined and acquiring data

Example of acquired scenes for Waiotapu until March 7, 2020; their quality and relation to local sunrise/sunset
FUMAROLE MONITORING

Remote fumarole monitoring without telemetry / without remote system health info

WORKING EXAMPLE

UNIVERSITY OF TWENTE.
FUMAROLE MONITORING – HARDWARE UPGRADE

Upgraded control units prepared and shipped

On-site hardware upgrade done with the support from partner KenGen

UNIVERSITY OF TWENTE.
FUMAROLE MONITORING – DATA COMING IN

Olkaria Fumarole 8: time series of single pixel

Olkaria Fumarole 8: first 3 days of 2020

MSc student Benard Omwenga working on data

UNIVERSITY OF TWENTE.
TO BE DISCUSSED

- Plan: rollout of results to (near-) global scale
- Needed: acquisition of sufficient (night) data until end of mission
- Question: is it feasible?

Global distribution of high enthalpy geothermal energy potential

Source: energyeducation.ca
Study areas
- Namibia – Haib & Omaheke areas

Aim
- investigate the surface and sub-surface geological influences on multi-temporal thermal acquisitions

Methodology:
- Compare changes in surface temperature with time over different outcropping and sub-surface geology.
- Calculate the Apparent Thermal Inertia from optimal and proximal day / night ECOSTRESS pairs of surface temperature observations.

=> faults, outcrops, sand covered geology

UNIVERSITY OF TWENTE.
SPIN-OFF: THERMAL INERTIA

Omaheke Geology

ECOSTRESS: 20190602T000142
2 June 2019, Local time 02:01 am

Result:
Give a glimpse at physical properties at shallow subsurface
Link between surface rem sens and subsurface geophysics
INVESTIGATING DYNAMIC THERMAL PROCESSES TO OPTIMIZE GEOTHERMAL HOTSPOT DETECTION

“USING ECOSTRESS TO EMPOWER THE ENERGY TRANSITION”

CHRIS HECKER, ROBERT HEWSON
ROBERT REEVES, EUNICE BONYO, THOMAS GROEN

ECOSTRESS WORKSHOP DECEMBER 1, 2020
c.a.hecker@utwente.nl

FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION