

Glynn Hulley¹, Robert Freepartner¹, Robert Radocinski¹, Gerardo Rivera¹, Simon Hook¹ Frank Goettsche² 1. Jet Propulsion Laboratory, California Institute of Technology 2. Karlsruhe Institute of Technology

> (c) 2020 California Institute of Technology. Government sponsorship acknowledged. ECOSTRESS Science Team meeting, Ventura, CA, 11-13 February, 2020

Outline

- 1. L2 products
- 2. QC and Cloud Masking
- 3. Stage-2 Validation

Credit: NASA/SpaceX

ECOSTRESS Level-2 Science Data Sets (SDS)

SDS	Long Name	Units
LST	Land Surface Temperature	K
Emissivity	Emissivity (bands 1 -5)	n/a
QC	Quality Control (16-bit)	n/a
LST_err	LST Uncertainty	K
Emis_err	Emissivity Uncertainty (bands 1 – 5)	n/a
EmisWB	Wideband Emissivity (8 – 12.5 micron)	n/a
PWV	Precipitable Water Vapor	cm

Bits 1&0	Long Name Mandatory QA flags	Description 00 = Pixel produced, best quality							
100	Manuatory QA hags		lity. Either one or more of the following	D	ease read the User Guide a	nd			
		conditions are met:	ity. Eater one of more of the following		ricase ieau the User Guide and				
			ds 4 and 5 < 0.95, i.e. possible cloud	-	n_{2} r_{2} r_{2				
		contamination		pay attention to QC! 🙏					
		2. Low transmissivity du check PWV values and	e to high water vapor loading (<0.4), error estimates	<u>http</u>	https://lpdaac.usgs.gov/documents/423/ECO2_User_Guide_V1.pdf				
		3. P							
		Bits	Long Name		Description				
		10 = Pixel pr	Mandatory QA f	lags	00 = Pixel produced best quality				
		11 = Pixel no	E.S.		01 = Pixel produced nominal quality. ither one or				
3 & 2	Data quality flag	should check 00 = Good qu			more of the following conditions are met:				
		01 = Missing			1. Emissivity in both bands 4 and 5 < 0.95, i.e.				
		10 = not set			possible cloud contamination				
5&4	Cloud/Ocean Flag	11 = Missing Not set. Plea							
		information.			Low transmissivity due to high water vapor loading (<0.4), check PWV values and error				
7&6	Iterations	00 = Slow co 01 = Nomina			estimates				
		10 = Nomina			3. Pixel falls on missing scan line in bands 1&5,				
		11 = Fast			and filled using spatial neural net. Check error				
9&8	Atmospheric Opacity	00 = >=3 (Wa			estimates.				
		01 = 0.2 - 0.3			Recommend more detailed analysis of other QC				
		10 = 0.1 - 0.2			information				
11 & 10	MMD	11 = <0.1 (Dr 00 = > 0.15 (10 = Pixel produced, but cloud detected				
		01 = 0.1 - 0.1			11 = Pixel not produced due to missing/bad data or				
		10 = 0.03 - 0			TES divergence, user should check data quality flag				
10.0.10		11 = <0.03 (\			bits.				
13 & 12	Emissivity accuracy	00 = >0.02 (F							
	(Average of all bands)	10 = 0.01 - 0.015 (Good performa							
		11 = <0.01 (Excellent performance)							
15 & 14	LST accuracy	00 = >2 K (Poor performance)	2)						
		01 = 1.5 - 2 K (Marginal performa	nce)						
		10 = 1 - 1.5 K (Good performance)			л			
		11 = <1 K (Excellent performance)			4			

MODIS cloud mask tests

		Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime
		Ocean	Ocean	Land	Land	Snow/ice	Snow/ice	Coastline	Coastline	Desert	Desert
BT ₁₁	(Bit 13)	×	~								
BT _{13.9}	(Bit 14)	~	~	×	~	~	~	~	~	~	~
BT _{6.7} & BT ₁₁ - BT _{6.7}	(Bit 15)	~	~	√	~	~	~	~	~	~	0
R _{1.38}	(Bit 16)	~		~		~		~		~	
$BT_{3.7} - BT_{12}$	(Bit 17)				~	-	~				~
$BT_{8.6} - BT_{11} & 8 \\ BT_{11} - BT_{12} & 8 \\ \end{bmatrix}$	è (Bit 18)	✓	~	~	~			~	~	~	~
<i>BT</i> ₁₁ - <i>BT</i> _{3.9}	(Bit 19)	~	~	~	~	~	~	~	~	~	~
R _{0.66} or R _{0.87}	(Bit 20)	~		~		~		~		~	
$R_{0.87}/R_{0.66}$	(Bit 21)	√		✓				~			
Delete this rov	V.										
<i>BT</i> _{7.3} - <i>BT</i> ₁₁	(Bit 23)				0				0		0
Temporal Con	(Bit 24)	0	0								0
Spatial Variab	ility (Bit 25)	~	~								

Cloud Mask Challenges

- ECOSTRESS has two cloud thermal tests:
 - BT11: Band 4 brightness temperature threshold BT11 threshold (day/night, elevation)
 - BT11 BT12: Band 4 5 brightness temperature difference
 BT11 BT12 (LUT based on band 4 brightness temperature)

However, ideally:

- 1. BT11 threshold (location, time of day, time of year, elevation)
- Work to be completed this summer and implementation in build 7 reprocessing

ECOSTRESS LST [K], Ames, 20190803T203332

ECOSTRESS LST [K], Ames, 20190803T203332

ECOSTRESS LST - Emis5 for cloud, Ames, 20190803T203332

2/19/20

CEOS LST validation best practices

- 1. Temperature-based validation
- 2. Radiance-based validation
- 3. Sensor LST product intercomparisons
- 4. Time-series analysis

Status: LST instrumented validation Sites

Site Name	State/ Prov	Country	Contact	Network / Organisation	Instruments
		-		5	Radiometer (in-house
Lake Tahoe (4 buoys)	CA/NV	USA	Simon.j.hook@jpl.nasa.gov	JPL	development)
· · ·					Radiometer (in-house
Salton Sea	CA	USA	Simon.j.hook@jpl.nasa.gov	JPL	development)
Table Mountain, Boulder	CO	USA	Jeff.Privette@noaa.gov	SurfRad	Pyrgeometer, Eppley
Fort Peck	MT	USA	Jeff.Privette@noaa.gov	SurfRad	Pyrgeometer, Eppley
Desert Rock	NV	USA	Jeff.Privette@noaa.gov	SurfRad	Pyrgeometer, Eppley
Sioux Falls	SD	USA	Jeff.Privette@noaa.gov	SurfRad	Pyrgeometer, Eppley
Goodwin Creek	MS	USA	Jeff.Privette@noaa.gov	SurfRad	Pyrgeometer, Eppley
Bondville	IL	USA	Jeff.Privette@noaa.gov	SurfRad	Pyrgeometer, Eppley
Penn State	PA	USA	Jeff.Privette@noaa.gov	SurfRad	Pyrgeometer, Eppley
					KT19.85 (Heitronics),
ARM SGP	ОК	USA	Jeff.Privette@noaa.gov	ARM	Pyrgeometer (Eppley)
ARM NSA	AL	USA	Jeff.Privette@noaa.gov	ARM	Pyrgeometer, Eppley
		Germany -	, and the second s		KT15.85 IIP, Heitronics
Lake Constance (ferry)			frank.goettsche@kit.edu	KIT NEW	
Evora		Portugal	frank.goettsche@kit.edu	KIT	KT15.85 IIP, Heitronics
Dahra		Senegal	frank.goettsche@kit.edu	KIT	KT15.85 IIP. Heitronics
Farm Heimat (Kalahari)		Namibia	frank.goettsche@kit.edu	KIT	KT15.85 IIP, Heitronics
Gobabeb Windmast (GBB Wind)		Namibia	frank.goettsche@kit.edu	KIT	KT15.85 IIP, Heitronics
Gobabeb Plains (GBB Plains)		Namibia	frank.goettsche@kit.edu	KIT	KT15.85 IIP, Heitronics
Neumayer Station III (Germany)		Antarctica	Gert.Koenig-Langlo@awi.de	BSRN	Pyrgeometer, Eppley
CRN sites		USA	Jeff.Privette@noaa.gov	NOAA CRN	SI-111, Apogee
					broadband hemispherical
BSRN		Global	respective site owner	BSRN	radiances
Valencia		Spain	cesar.coll@uv.es		SI-121, Apogee (8-14µm)
					IR120, Campbell
					Scientific; Apogee (8-
Barrax		Spain	Jose.Sobrino@uv.es	University of Valencia	
					IR120, Campbell
					Scientific; Apogee (8-
Doñana		Spain	Jose.Sobrino@uv.es	University of Valencia	
					IR120, Campbell
					Scientific; Apogee (8-
Cabo de Gata		Spain	Jose.Sobrino@uv.es	University of Valencia	
					CNR1, Kipp & Zonen
					(broadband hemispherical
OzFlux ASM site		Australia	James.Cleverly@uts.edu.au	TERN	radiances)
Etna		Italy	fabrizia.buongiorno@ingv.it		radiances)
Almeria (2 sites)		Spain	Jose.Sobrino@uv.es	University of Valencia	

JPL Cal/Val sites: Lake Tahoe and Salton Sea, CA

Lake Tahoe operating 24x7 since 1999

Salton Sea since 2007

JPL Cal/Val sites: Russell Ranch, CA

Instrument/Sensor Description	Data Collected
Wind speed indicator (MET)	The values are in counts and are converted to meters per second (ms ⁻¹)
Wind direction indicator (MET)	The values are in counts and are converted to degrees with respect to magnetic north
Air Temperatures with Gill radiation shield (MET)	The values are in counts and are converted to degrees Celsius (the air temperatures and relative humidity sensor are integrated together)
Relative Humidity (RH) (MET)	The values are in counts and are converted to percent
Barometric Pressure with Pressure Port (MET)	The values are in counts and are converted to hectopascals or millibars (hPa or mBar). The pressure port is used to prevent any errors in pressure due to wind over the sensor
Li-COR Photosynthetically Active Radiation (PAR) sensor	Sensor measures Photosynthetic Photon Flux Density (PPFD) in both natural and artificial light
Net Radiometer	Incoming solar radiation (short wave), reflected solar radiation, incoming far infrared radiation (long wave), outgoing far infrared radiation, sky temperature and ground temperature
JPL-built Radiometer	Land surface temperature
Eddy Covariance System	Air temperature, sonic air temperature, barometric pressure, absolute carbon dioxide and water vapor densities and the orthogonal wind components (three-dimensional)

JPL validation tower at Russell Ranch, CA

- Crops are sown in ~April (usually tomatoes)
- Harvesting occurs in late September
- Tower has a visible camera taking daily snapshots of field condition
- Two radiometers pointing perpendicular to crop rows

NO TRESPASSING

1

14

1

1 D

4

Radiance-Based Temperature Validation

Algodones Dunes, CA

White Sands, NM

ECOSTRESS 3 vs 5-band TES accuracy

07/2018 - 3/2019

05/2019 - 02/2020

0.1 K higher error for 3-band TES, negligible change in Bias

LST error vs atmospheric water vapor (Algodones dunes, CA)

LST error vs satellite view angle

CEOS LST Validation Recommendations

- 1. Temperature-based validation
 - Ground instrumented sites
 - Sensor LST matched to ground temperature measurements with NIST traceable standards
- Advantages:
 - Most direct and accurate method of validation
 - Can also be used for calibration purposes
- Disadvantages
 - Requires accurately matched measurements
 - Site and instrument maintenance is costly

CEOS LST Validation Recommendations

- 2. Radiance-based validation
 - Radiative closure simulation experiment
 - Requires accurate site emissivity data and atmospheric profiles (NWP or radiosonde)
- Advantages:
 - Can be used to validated coarser resolution sensors
 - Can be applied on global scales day and night
- Disadvantages
 - Requires accurate atmospheric profiles and emissivity
 - Requires sensor with at least two bands at 10-12 micron

Fmask: VSWIR + TIR

Landsat 8 RGB (7,6,4)

Fmask: VSWIR only

Landsat 8 RGB (7,6,4)

Landsat 8 RGB (7,6,4)

Landsat 8 RGB (7,6,4)

CEOS LST Validation Recommendations

- 3. Sensor LST scene intercomparisons
 - Comparisons with contemporaneous LST from other well calibrated/validated sensors
 - e.g. Landsat vs ASTER, or Landsat vs GOES-16
- 4. Time-series comparisons
 - Comparisons between LST products over time to identify sensor drift, calibration, cloud detection issues

CEOS WGCV Validation Stages

Table 8. The CEOS WGCV Land Product Validation Stages.

Stage 0 Validation	No validation results have been reported.
Stage 1 Validation	Product accuracy is assessed from a small (typically < 30) set of locations and time periods by comparison with in situ or other suitable reference data.
Stage 2 Validation	Product accuracy is estimated over a significant set of locations and time periods by comparison with reference in situ or other suitable reference data. Spatial and temporal consistency of the product with similar products has been evaluated over globally representative locations and time periods. Results are published in the peer-reviewed literature.
Stage 3 Validation	Uncertainties in the product and its associated structure are well quantified from comparison with reference in situ or other suitable reference data. Uncertainties are characterized in a statistically robust way over multiple locations and time periods representing global conditions. Spatial and temporal consistency of the product and consistency with similar products has been evaluated over globally representative locations and periods. Results are published in the peer-reviewed literature.
Stage 4 Validation	Validation results for stage 3 are systematically updated when new product versions are released and as the time-series expands.

- Spatial representativeness is key
- Sites should be homogeneous at a scale of <u>at least</u> 3x3 satellite pixels

Before the harvest

After the harvest

Bondville SURFRAD site measures different proportions of vegetation depending on time of year making it unsuitable for LST validation

LST validation good practices

Committee on Earth Observation Satellites Working Group on Calibration and Validation

Land Product Validation Subgroup

Land Surface Temperature Product Validation Best Practice Protocol

Version I.I - January, 2018

Editors: Pierre Guillevic, Frank Göttsche, Jaime Nickeson, Miguel Román

- Authors: Pierre Guillevic, Frank Göttsche, Jaime Nickeson, Glynn Hulley, Darren Ghent, Yunyue Yu, Isabel Trigo, Simon Hook, José A. Sobrino, John Remedios, Miguel Román and Fernando Camacho
- Citation: Guillevic, P., Göttsche, F., Nickeson, J., Hulley, G., Ghent, D., Yu, Y., Trigo, I., Hook, S., Sobrino, J.A., Remedios, J., Román, M. & Camacho, F. (2018). Land Surface Temperature Product Validation Best Practice Protocol. Version 1.1. In P. Guillevic, F. Göttsche, J. Nickeson & M. Román (Eds.), Best Practice for Satellite-Derived Land Product Validation (p. 58): Land Product Validation Subgroup (WGCV/CEOS), doi:10.506/7/doc/ccoswgcvl/pvl/st.001

'EarthTemp textbook'

ELSEVIER

Taking the Temperature of the Earth

Steps towards Integrated Understanding of Variability and Change

☆☆☆☆☆ Write a review

Editors: Glynn Hulley, Darren Ghent

Paperback ISBN: 9780128144589

Imprint: Elsevier Published Date: 21st June 2019

Page Count: 258

- Observing & understanding various surface temperatures of Earth
- Describes progress by domain (air, land, sea, lakes and ice)
- Rigorous validation chapter