

ECOSTRESS Science & Applications Team meeting - February 11-13, 2020 – Ventura, CA

TRISHNA Project, Scientific Objectives and Specifications

Philippe GAMET (CNES, mission performance & mission group secretary)

And TRISHNA mission Principal Investigators:

Jean-Pierre Lagouarde (INRA), Jean-Louis Roujean (CNRS/CESBIO), Bimal K. Bhattacharya (ISRO/SAC)

Global context

□ Presentation of the program and cooperation ISRO/CNES

□ TRISHNA scientific objectives

□ Main mission specifications and justification

TRISHNA products

□ TRISHNA science groups

Global context

Global change (climate, population growth, land use, urbanization, deforestation...) \Rightarrow increasing scarcity and deteriorating quality of the water resource

Monitoring of the water cycle is becoming more and more crucial

Mcgranahan, Gordon. (2002). Demand-Side Water Strategies and the Urban Poor.

Physical water scarcity Economic water scarcity Little or no water scarcity

Land and sea surface temp. (LST and SST) are key signatures of water and energy budgets

- \Box evaluate the current drifts and assess their impacts on surface
- \Box calibrate and validate the models predicting the evolution of ecosystems \rightarrow adapting the mitigation methodologies for a sustainable development

Measurements in the Thermal Infrared (TIR) domain \rightarrow LST, SST

Spatio-temporal variability of the surface :

□ Complexity of physical and biological processes → access to local scale needed for decision and management policies

□ Short-time scale variability (meteo forcing, human activities...)

Need for Spatial systems in the TIR with: high spatial resolution high revisit capacities SUCH A SYSTEM DOES NOT EXIST TODAY

Current satellite TIR data : a resolution/revisit dilemna

Mission recommended during the last Scientific Prospective Seminar in 2004, 2009, 2014, 2019. High priority confirmed by the French Scientific Committee

With the long-term and constant involvment of Jean Pierre Lagouarde (INRA) \rightarrow Jean Louis Roujean (CESBIO)

Cooperation Agreement between CNES and ISRO for a reinforced cooperation in space activities - signed in April 2015

To set up the terms and conditions of a favorable cooperative framework for the implementation of any future joint mission

Implementing Arrangement for Trishna - signed January 24, 2016

To conduct definition studies for a potential joint thermal-infrared (TIR) Earth Observation mission

Phase 1

• Finalisation of the mission requirements and associated data policy principles

Definition of work share and responsibilities

 \rightarrow Closed in november 2017 (Mission Definition Review)

Phase 2

- Finalization of the system requirements
- Definition of the satellite configuration, the payload concept, the launch strategy
- Development plan and costs definition
- Preparation of the Arrangement for realization Phase
- → Closed in October 2019 (Preliminary Requirement Review)

				Ċ				
•	•	•	•	cnes	•	•	•	

Mass	195 kg
Power	265 W
Optics	Three-mirror anastigmat telescope
Number of spectral bands	4
Band names	TIR1 - TIR2 - TIR3 - TIR4
Specified central wavelengths	$8.65 \mu m - 9.0 \mu m - 10.6 \mu m - 11.6 \mu m$
Specified FWHM per band	$0.35 \mu m - 0.35 \mu m - 0.7 \mu m - 1.0 \mu m$
Radiometric accuracy	0.5K at 300K
Radiometric precision	0.2K at 300K
Dynamic range	250K - 400K
Aperture size	150mm
Focal length	400mm
Focal plane temperature	60K
On-board calibration	1 blackbody + 1 cold space view
Scan cycle	5 sec

TRISHNA Scientific objectives

- 1) Ecosystem stress and water use
- 2) Coastal and inland waters
- 3) Urban ecosystems monitoring
- 4) Solid Earth
- 5) Cryosphere
- 6) Atmosphere

design driver design driver

TRISHNA Scientific objectives: design drivers

···· cnes ····

Ecosystem stress and water use

Agriculture/forestry

- water stress detection / water needs / irrigation optimisation
- water resources management
- growth/ crop production, food security
- impact of agricultural practices on water use, climate change adaptation
- forest fire risks, frost detection...

Biogeochimical cycles

- carbon cycle \leftrightarrow global warming processes
- water quality
- soil pollution
- arctic permafrost

Hydrology

- link with meteorology (mesoscale circulation)
- water budgets and biogeochimistry at watershed scale

Ecosystem monitoring, ecology

- microclimates, biodiversity
- natural vegetation droughts

Coastal and inland waters

Coastal waters

- Submesoscale activity (mixing processes) ↔ ecosystems productivity (phytoplankton)
- Gaz fluxes (CO₂, CH₄) at the air-sea interfaces
- Coastal zone monitoring and management: water quality, algae blooms, halieutic resource, fresh water resurgences, discharges (water, pollutants, thermal plumes...)

Inland waters (lakes and rivers)

- GTN-L lakes (GCOS) [Essential Climate Variable Ts]
- Deltas, estuary hydrology, lagunaes
- Biological activity and productivity
- Warning of water borne diseases (application to human health)
- Thermal discharges

Sea ice (at local scale)

- Monitoring melting/freezing processes (meltponds, leads, polynyas)
- Feedbacks climate \leftrightarrow melting ice

TRISHNA Scientific objectives

Urban microclimates

- Urban heat island and comfort (welfare, health...)
- Urban vegetation
- Urban and peri-urban hydrology (run-off, urban planning)
- Urban meteorology and atm. flow (dispersion of pollutants...)
- Anthropogenic fluxes and energy consumptions *(heating, air conditionning ...)*

Urban population (10⁹ inhabitants)

Cryosphere

- Melt runoff using Degree-Day and Energy Balance approach
- Identification of debris cover/thickness over glacier ice
- Snow metamorphism processes and its effect on snow reflectance
- Lake dynamics at High alt. and Basin/Sub-basin scale dynamics
- Retrieval of sea ice surface temperature in polar region

Solid Earth

- Monitoring volcanic activity (prediction of eruptions, mitigation of risks...)
- Detection of peat and coal fires (pollution, CO₂...)
- Detection of thermal anomalies (geothermal exploration, earthquakes precursors...)

Atmosphere

- surface radiation budget
- clouds (high clouds, cirrus...)
- atmospheric water vapor

Revisit guided by :

- □ Cloud frequency / data availability
- Technical constraints : swath, arrays detector size, view zenith angle
- □ Expected products (AET) accuracy

Spatial resolution guided by :

- □ Field size
- Technical constraints : arrays detector size, swath
- □ LST accuracy (*vs* atmospheric turbulence induced fluctuations)

1 day is the goal
 3 days is the best possible with single satellite

50 - 60 m (nadir)

<100m (edge)

Puducherry region, India

Brittany region, France (© Google Earth)

SST measurements

1PM LST → 1AM nighttime overpass preferred for water surfaces temperature (no skin thermal effects)

For mid-latitudes, scan perpendicular to 1PM principal plane \rightarrow mitigation of hot spot effects

> Not true for intertropical areas !

LST measurements are affected by **atmospheric turbulence**:

- Temporal fluctuations over dry maize field or bare soil (from experimental measurements)
 - SBL turbulence effect on LST is smoothed by spatial integration on the pixel

□ PBL turbulence affects LST whatever the pixel size \rightarrow uncertainty on instantaneous LST meas. from space

Surface Boundary Layer (SBL) turbulence: meters & seconds Planetary Boundary Layer (PBL) turbulence: kms & minutes

Experimental characterization of the uncertainty on LST, at 50m resolution: +/-0.6K for ~60% of the measurements +/-0.8K for ~80% of the measurements

Lagouarde et al., RSE 2013 Lagouarde et al., RSE 2015

Specifications:

- □ Specified NeDT at instrument level: **0.2K**
- □ Absolute Radiometric Accuracy: **0.5K**

Impact on level 2 products: Atmospheric correction / Temperature-emissivity separation (TES): **1K to 1.5K uncertainty on LST**

LST systematic uncertainty of 1.5 K is sufficient for acquiring a daily ET accuracy of 5%

Allen et al., 2007 Sobrino et al. 2016

Complementarity TIR/VNIR/SWIR

- $\Box \text{ TIR} \rightarrow \text{water stress}$
- $\Box \text{ VNIR} \rightarrow \text{vegetation status}$
- VNIR provides information on potential "accidents" in the temporal evolution of the vegetation status
- ❑ SWIR bands for thin cirrus cloud detection (1.38µm) and snow/cloud discrimination (1.6µm)

'Ecosystem stress' (vegetation) scientific objective

- Rapid surface changes: phenology (growth, flowering, senescence...), water stress, harvesting...
- Albedo needed for energy budget and *in fine* AET (actual evapotranspiration)
- Model constraining

'Coastal and inland waters' scientific objective

- Information on biological activity needed (chlorophylle concentration...)
- Dependence with turbulence and mixing processes (rapidly changing)

'Urban ecosystem monitoring' scientific objective

➤ Complexity of the structure → lots of shadows → less correlation between TIR and VNIR measurements if not acquired at the same time

Directional anisotropy in TIR: still a research field

- □ A uniform viewing configuration on a given site allows minimizing its impact
- With a constant viewing configuration, the angular effect appears as a bias, and not as an error (crucial for temporal analysis)

Selected orbit: 761 km altitude / 8 days revisit

- □ Repeatable geometric conditions every 8 days
- □ Compatible with global coverage every 3 days with extended swath (+/- 33 deg swath angle)
- Provides 2 hot-spot free acquisitions every 8 days on inter-tropical regions at any period of the year
- Drawback: swath is extended

Number of accesses in 8 days (with scan ± 34 *deg)* \rightarrow

Hot-spot

- On a 3-day orbit, intertropical zones measurements can be inside hot-spot conditions, affecting seasonallong time series
- Different viewing configurations garantee hot-spot free acquisitions, and provides valuable data for studying directional anisotropy

Band name	Wavelength Center (nm)	FWHM (nm)	Purpose
Blue	485	70	Detection of low clouds
Green	555	70	Coastal, sediments, snow
Red	670	60	Vegetation (LAI, fCOVER, NDVI,)
NIR	860	40	Vegetation (LAI, fCOVER, NDVI,)
Cirrus	1380	30	Detection of thin cirrus clouds
SWIR	1610	100	AOD, snow/cloud discrimination, vgt stress, burnt areas

+ 910nm band for water vapor content estimation (under study)

Band name	Wavelength Center (µm)	FWHM (µm)	Purpose
TIR 1	8.65	0.35	Temperature/emissivity separation
TIR 2	9.0	0.35	Temperature/emissivity separation
TIR 3	10.6	0.7	Split-window
TIR 4	11.6	1.0	Split-window

Source: TRISHNA SMRD V3.0

Blue 485 70 30 663.5 50 Green 555 70 30 600.5 100 Red 670 60 20 486.1 100	Band name	me Wavelength Center (nm)	FWHM (nm)	L _{typ} (W/m²/sr/µm)	L _{max} (W/m²/sr/µm)	Required SNR @ L _{typ} (*)
	Blue	485	70	30	663.5	50
Red 670 60 20 486.1 100	Green	555	70	30	600.5	100
	Red	670	60	20	486.1	100
NIR 860 40 30 325.3 100	NIR	860	40	30	325.3	100
Cirrus 1380 30 6 55.0 25	Cirrus	1380	30	6	55.0	25
SWIR 1610 100 4 77.9 100	SWIR	1610	100	4	77.9	100

(*) expressed at native GSD (57m)

Band name	Wavelength Center (μm)	FWHM (µm)	NeDT _{threshold} @300K (K)	NeDT _{goal} @300K (K)	T _{saturation} (K)
TIR 1	8.65	0.35	0.3	0.25	400
TIR 2	9.0	0.35	0.3	0.25	400
TIR 3	10.6	0.7	0.25	0.2	400
TIR 4	11.6	1.0	0.25	0.2	400

Source: TRISHNA SMRD V3.0

Product level	VNIR & SWIR TIR					
0	Raw observation data Raw observation data					
1	Ortho-rectified image Coarse cloud mask Top-of-atm. reflectanceOrtho-rectified image Coarse cloud mask 					
2a	Radiative variables :Radiative variables :• Scene classification (Cloud, Shadows, Water, Snow, Land)• Scene classification (Cloud, Shadows, Water, Snow)• Surface reflectance after atm. correction• Surface radiance after atm. Correction• Atmospheric variables (water vapour, AOT)• Surface temperature• Albedo• Surface emissivity					
2b	 Biophysical variables (ecosystem stress and water use): leaf area index, fractional vegetation cover, fAPAR net radiation, evapo-transpiration, water stress index 					
3a	Periodic Syntheses (decadal, monthly) of radiative variables (see Level 2A)					
3b	Periodic Syntheses (decadal, monthly) of biophysical variables (see Level 2B) + - land cover - mask of irrigated crops					

Mission sub-groups:

- Ecosystem stress and water use
- **Coastal and inland waters**
- □ Urban microclimate monitoring
- Solid Earth
- Cryosphere
- Atmosphere
- CAL/VAL
- Definition of the products

Organization:

- French / Indian mirror organization involving local research entities
- Objectives: definition of the expected variables and associated precision, products, algorithms, cal/val strategy
 - \rightarrow joint Indo-french ATBDs
 - Synergies to develop with ECOSTRESS, SBG, LSTM science teams

Next milestones:

- TRISHNA session at RAQRS 2020 *(ipl.uv.es/raqrs)*
- ☐ TRISHNA science workshop in Bangalore (Nov 2020)
- □ TRISHNA symposium in Toulouse (End 2021 / Beg 2022)

□ ISRO/CNES cooperation, launch in 2025

 $\hfill\square$ Focus on ecosystem stress and water use

- Global coverage
- □ 4 TIR bands + 4 VNIR bands + 2 SWIR bands
- Revisit : 3 acquisitions per 8 days period
 761km-8day orbit reducing hot spot constraints in intertropical zone
- \Box ± 34° scan angle, 1030km swath
- Nadir spatial resolution (VNIR-SWIR-TIR):
 57 m for continental and coastal areas, binned at 1 km over open ocean

 \Box Overpass time : 1 PM ± 15 mn

□ NeDT 0.2K

 Indo-French^(*) science mission group, synergies to develop with ECOSTRESS, SBG, LSTM science & application teams (*) with european contributors

Daily global Sea Surface Temperature data (Dec 20, 2013) 1-km resolution Credit: JPL Regional Ocean Modeling System group

Philippe GAMET CNES/CESBIO, Toulouse, France Philippe.Gamet@cnes.fr

TRISHNA mission performance TRISHNA mission group secretary **Dr. Gilles BOULET** IRD/CESBIO, Toulouse, France <u>*Gilles.Boulet@ird.fr*</u>

Team leader for « Ecosystem stress & water use » group

Philippe MAISONGRANDE CNES, Toulouse, France

Philippe.Maisongrande@cnes.fr

CNES Land Program manager

Dr Jean-Louis ROUJEAN

CNRS/CESBIO, Toulouse, France

Jean-Louis.Roujean@cesbio.cnes.fr

French P.I. for TRISHNA

Dr. Bimal K Bhattacharya Head of Agriculture and Land Eco-system Division Space Applications Centre, ISRO, Ahmedabad <u>bkbhattacharya@sac.isro.gov.in</u>

Indian P.I. for TRISHNA

