Diurnal Vegetation Water Stress Over a Semiarid Mixed Conifer Forest

Mostafa Javadian,
William Smith, Kangsan Lee, John Knowles, Russell Scott, Joshua Fisher,
David Moore, Willem Leeuwen and Ali Behrangi
August 2021
Background

- Plant canopy temperature (T_c) is partly regulated by evaporation and transpiration from the canopy surface and can be used to infer changes in stomatal regulation and vegetation water stress.
- Over Southwest US, Air temperature differences between day and night often exceed 30°C.
- Plants have adapted to regulate their leaf temperatures through transpiration, or the loss of water through tiny pores on their leaves called stomata.
- ECOSTRESS mission is the first satellite capable of detecting sub-daily vegetation water stress.
- Thermal sensors placed on Unmanned Aircraft Systems (UAS) have higher spatial and temporal resolution.
- The eddy covariance technique, Tree sap flow and Photochemical Reflectance Index (PRI) can give us diurnal dynamics of the plants.
- In this study, we combined thermal UAS, eddy covariance, sap flow, PRI, and ECOSTRESS data to assess diurnal vegetation water stress over a semiarid mixed conifer forest in southern Arizona.
Instruments

US-MtB Flux tower

MAVIC 2 Thermal UAS

Tree Sap Flow

photo by M. Cavanaugh
Footprint of the various instruments
UAS 3D Outputs

UAS October UAS November Lidar
Site Description

RGB

Elevation

Slope

Aspect

Tree Density

Tree Height
UAS thermal images on Nov 14, 2020
Diurnal variation of canopy temperature and VPD

- On average, T_c was 1.8 °C lower than air temperature.

- Relationship between T_c and T_a varied significantly according to tree density and tree height classes.

- Taller / denser tree stands exhibiting relatively low T_c-T_a (2.4 and 2.1 °C cooler respectively).

- Shorter / lower density stands (1.7 and 1.5 °C cooler respectively).

- 2 °C difference between Taller / denser tree and Shorter / less-dense at noon.
Comparison between datasets

- Thermal data from ECOSTRESS and UAS are in high agreement with PRI and sap flow data

- There is a lag between sap flow peak and LE peak

- Soil evaporation is dominant in the morning, but transpiration is more significant in afternoon

- Towers cannot partition evaporation and transpiration but spatial thermal data including thermal UAS and ECOSTRESS are able to capture this difference and are consistent with sap flow.
ECOSTRESS capability to capture diurnal dynamics

- ECOSTRESS LST as an index of T_c was 1.2 °C cooler than T_a which is comparable by UAS T_a-T_c that was 1.8 °C considering the soil impact on ECOSTRESS LST

- LE peaks about 12 pm in all seasons

- However, sap flow as an index of transpiration peaks at 3 pm in all seasons because of time-dependent redistribution of water within the trees
Conclusion

• Canopy temperature and VPD differed significantly among different tree density and height classes for a semiarid mixed conifer forest site
• Diurnal canopy temperature dynamics were closely related to canopy PRI and plant hydraulic traits
• Satellite observations from ECOSTRESS captured aspects of diurnal canopy temperature dynamics that were consistent with site-level measurements
Thank you for Your Attention!
javadian@email.arizona.edu
@mostafajavadian