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STARS
Spatial Timeseries for Automated high-Resolution multi-Sensor data fusion

2

High 
spatial

High 
temporal

A new multivariate timeseries-based data fusion 
method to provide high spatial and temporal 
resolution products using timeseries of satellite 
imagery from multiple sensors.

Key features:
• Automated downscaling and spatiotemporal 

gapfilling

• Uncertainty propagation and quantification

• Computational scalability -- suitable for streaming, 
post-processing, and offline applications
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Major challenge is lack of coincident VSWIR and TIR measurements
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The PT-JPL (Fisher et al., 2009) 
evapotranspiration (ET) algorithm requires 
inputs from the visible to shortwave infrared 
(VSWIR), but VSWIR imagery is rarely 
coincidently available with ECOSTRESS 
overpasses at high spatial resolution.

• ≤ 30m resolution weekly+ 
Sentinel/Landsat is rarely acquired on 
same day as ECOSTRESS.

• Co-incident daily VIIRS/MODIS (500m -
1km) too coarse to monitor highly 
heterogenous terrain.
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Major challenge is lack of coincident VSWIR and TIR measurements
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ET using Landsat 7 Days Prior ET using Same Day Sentinel Difference in ET estimates

Figure courtesy of G. Halverson. 

If substantial phenological change has 
occurred since last-available high-
resolution VSWIR imagery, significant 
error and uncertainty in ET can result 
(Cawse-Nicholson, et al. 2020, Halverson 
et al., in prep).

STARS provides the capability to estimate 
(with uncertainty) coincident NDVI and 
albedo for any ECOSTRESS overpass.
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Multi-sensor data fusion
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Existing Methods (non-exhaustive, see e.g. Zhu et al. 2018 for a review):

• STARFM and subsequent variants (e.g., Gao et al. 2006, Zhu et al. 2010), Unmixing-based methods 
(e.g., Gevaert, et al. 2011)

• Machine learning, random forests/neural networks (e.g., Yu et al. 2018, Zhang et al. 2018)

• Spatial/spatiotemporal statistical models (e.g., Nguyen, et al. 2012,2014,2017; Ma and Kang, 2020; 
Johnson, et al., 2021)
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Challenges for data fusion
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Land surface properties (e.g. fields) exhibit 
sharp structural change not easily modeled by 
smooth spatial processes.

Massive data, mission processing requirements and 
computational constraints

Spatial heterogeneity

Missing data

70m resolution 
imagery is already 
~2million pixels per 
100km tile, retrieval 
algorithms needs to 
process hundreds 
of tiles per day 
(hundreds of tiles 
per day for 
ECOSTRESS)!

Temporal revisit and 
cloud contamination 
can result in no fine 
spatial imagery over 
pixels for several 
days.

Sentinel 2 100x100km tiling scheme.

Uncertainty Quantification!
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Multi-sensor data fusion
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Existing Methods (non-exhaustive, see e.g. Zhu et al. 2018 for a review):

• STARFM and subsequent variants (e.g., Gao et al. 2006, Zhu et al. 2010), Unmixing-based methods 
(e.g., Gevaert, et al. 2011)

• Machine learning, random forests/neural networks (e.g., Yu et al. 2018, Zhang et al. 2018)

• Spatial/spatiotemporal statistical models (e.g., Nguyen, et al. 2012,2014,2017; Ma and Kang, 2020; 
Johnson, et al., 2021)

Our Approach:
Leverage probabilistic time series models, learn how high resolution imagery evolves through time using 
coarse resolution imagery

• Model with spatially local, space-time dynamic linear models (e.g. Cressie and Wikle, 2011)
• Provides means for uncertainty propagation and quantification

• Computational scalability and spatial nonstationarity through approximate, moving window Kalman 
filtering/smoothing
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Dynamic linear models
General model formulation

𝒀! = 𝑭!𝒙! + 𝒗!, 𝒗!~𝑁 𝟎, 𝑽!
𝒙! = 𝑮!𝒙!"# +𝝎!, 𝝎!~𝑁 𝟎,𝑾!

• 𝒀𝑡 -- 𝑛𝑡 dim vector of observations at time 𝑡 = 1,… , 𝑇
• 𝒙! -- 𝑝 dim vector of latent states (e.g. high resolution imagery) at time t
• 𝑭! -- observation matrix defines how observations relate to state process
• 𝑮! -- transition matrix defines how states evolve in time
• 𝒗𝑡 and 𝝎! are Gaussian white noise processes 

8

Efficient evaluation via Kalman filtering/smoothing 
recursions (Kalman, 1960) – only requires 
propagation of mean and covariance matrices.

State estimation
• Filtering: 𝑝 𝑥! 𝑦":$ , 𝑠 = 𝑡

• Smoothing:  𝑝 𝑥! 𝑦":$ , 𝑠 > 𝑡

Knowledge of 
state at time 𝑡,
𝑝(𝑥!|𝑦":!)

Prediction at time 𝑡 + 1
based on process model,

𝑝(𝑥!$"|𝑦":!)

Data at time 𝑡 + 1

Update 𝑡 + 1 prediction 
with new data, 
𝑝(𝑥!$"|𝑦":! , 𝑦!$")

Recursive Bayesian Updating
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Measurement model

11/28/22 9

Target Process
𝑥!(𝑠/): 𝑖 = 1,… , 𝑛 -- latent true process 

defined on a target, high resolution grid made 
up of 𝑛 non-overlapping pixels with centroid 
locations 𝑠/

Sensor 1, 𝒚!" Sensor 2, 𝒚!# Target, 𝒙!

Assume the measurement in the 𝑘-th instrument grid, at pixel 𝐺0 is a noisy, potentially biased, aggregate of 
the true process (spatial change of support)

𝑦!$ 𝐺$ = 𝛼!$ 𝐺$ + 2
%&#

'

𝑤%$ 𝑥!(𝑠%) + 𝑣!$ 𝐺$ , 𝑣!$ 𝐺$ ~ 𝑁(0, 𝑉!$(𝐺$))

where

• 𝑦!0 𝐺0 -- measurement from instrument 𝑘 in grid cell 𝐺0 on day 𝑡

• 𝛼!0 𝐺0 -- additive dynamic bias for instrument 𝑘

• 𝑤/
0 -- aggregate weights, typically assumed uniform (simple average)

Spatial change of support

For	a	collection	of	pixels:
𝑭𝒕 -- aggregation matrix
𝑽! -- diagonal measurement 
error for each instrument
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Process model
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Assume states 𝒙! for a collection of high-resolution pixels 𝑖 = 1,… , 𝑛2 , are spatially-correlated timeseries

𝒙! = 𝒙!"# +𝝎!, 𝝎!~𝑁(0,𝛀!)
where

• 𝒙! = 𝑥"! , … , 𝑥3$!
4
for 𝑡 = 1,… , 𝑇 and 𝛀! is 𝑛2 𝑥 𝑛2 covariance matrix

Models for 𝛀! (increasing in complexity and performance):

1. Independence between pixels (𝛀! = 𝜎5𝑰) à ECOSTRESS 
Collection 2 
• Very computationally efficient, can be prone to coarse resolution 

artifacts for long lags between fine resolution imagery

2. Correlation based on spatial distance
• Gaussian processes and graphical models, eliminates spatial 

artifacts with smooth downscaling

3. Correlation based on historically similar timeseries/landcover
• Captures field level similarity, requires availability of long-run 

timeseries or landcover information

Field-level imagery Spatial correlation

Top left: Field-level structure 
Top right: Spatial correlation 
(2) of relative to pixel “x”. 
Bottom right: Correlation 
based on distance between 
past timeseries (3) relative to 
“x”.

Past similarity correlation
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Fusion via Kalman filtering/smoothing
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Given the model specification, the fusion targets are the posterior distributions 𝒙!|𝒚":! ~ 𝑁(𝒎! , 𝑪!)
(filtering) or 𝒙!|𝒚":6 ~ 𝑁(𝒔! , 𝑺!) (smoothing) obtained via Kalman recursions 

• 𝒎!/𝒔! and 𝑪!/𝑺! provide the fused estimate and associated uncertainty

Moving window implementation
Fuse on small overlapping windows defined on a 
“super-grid”, iterate across the target domain. 

Computational cost scales with buffer window size as 𝒪(𝑛27).

Given defined moving window super-grid, for each cell:
1. Select all instrument observations within a specified 

buffer
2. Obtain filtered/smoothed distributions for 𝑛2 pixels 

within window
3. Retain fused estimates only within super-grid cell, 

discard extra pixels within buffer region 

For two-sensor problems, it is 
straightforward to define the 
super-grid as the coarse-
resolution instrument grid.
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Near-infrared (NIR) surface reflectance data

11/28/22 12

1Suomi NPP VIIRS 
(daily, 500m)

2Harmonized 
Landsat 
Sentinel (HLS)
(~3-5 day, 70m)

1Schaaf et al., 2018,  https://lpdaac.usgs.gov/products/vnp43ia3v001/
2Claverie, et al, 2018, https://hls.gsfc.nasa.gov/
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Example results Salton Sea, CA

1311/28/22



jpl.nasa.gov

Example results Salton Sea, CA
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Daily, 70m smoothed fused estimates (using past and future data) from Oct. 01 – Dec 31, 2020.
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Example results Salton Sea, CA
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Daily, 70m Filtered fused estimates (using past and future data) from Oct. 01 – Dec 31, 2020.
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Performance Assessment

1611/28/22
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Example fusion HyTES region UK
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Example fusion results on July 22, 2021 over the HyTES testbed region. (Top) Most recently available 30m HLS 
imagery to the target date July 20, 2021 and July 23, 2021. (Bottom) 30m resolution fused imagery (left) with 
estimated pixel-level uncertainties (right) using all available HLS/VIIRS data from July 5 – August 4, 2021.
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Summary
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The STARS algorithm provides the capability to produce spatiotemporally complete imagery 
with associated uncertainty estimates at high spatial and temporal resolution.

• An initial version of STARS (independence model) has been integrated into the ECOSTRESS 
Collection 2 pipeline to produce coincident NDVI and albedo for the PT-JPL ET algorithm.

• STARS development is ongoing, we are currently working on automated approaches to 
specify/estimate model parameters, additional tricks for computational scalability, etc.

• Our aim is for the improved and generalized STARS methods to be available and suitable for any 
future ECOSTRESS reprocessing, SBG, and many other applications.

Thank You!

Contact: maggie.johnson@jpl.nasa.gov
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