Water Temperatures in the Bay-Delta

Christiana Ade*, Sam Bashevkin*, Kelly Luis, Brian Mahardja, Dain Kim, Rebecca Gustine, Cassandra Nickles, Christine Lee

*Presenting authors

The Bay-Delta

- Watershed is 40% of the land and 33% of the total runoff in California
- Heavy hydrological modification upstream (dams and diversions) and in the estuary (channelization, export pumps)
- Several endangered and threatened fish species
- Ongoing threats from water demands and climate change

Water temperatures

- Several endangered species (Chinook Salmon, Delta Smelt) are challenged by current temperature conditions
- Water temperature is a key variable
- 🕶 Metabolism
- Predation
 - ✓ Thermal stress
- Development rates
 - ス Reproductive timing
 - Climate change

Overall approaches for water temperatures

• In Situ

- Fixed location sondes
- Boat-based discrete monitoring

• Remote sensing

Leveraging discrete surveys

- 59,634 temperature records 1969 2020
- 405 unique locations
- 9 water quality and fish monitoring surveys
- Generalized additive models with spatioseasonal smooths

Water temperature has increased 0.017 °C/year over 50 years

- Fastest warming in the North
- Widespread warming in Nov, Dec, Jan, Feb, and Apr

Bashevkin, Mahardja, and Brown (2022), Limnology and Oceanography

Longitude

Predominantly negative temp-inflow Jan Feb Mar A

- **Negative** temperature-inflow relationships
 - Higher inflow = cooler water
 - Most common
- Positive temperature-inflow relationships
 - Higher inflow = warmer water
 - Occurs during winter and downstream in the summer

Bashevkin and Mahardja (2022), Limnology and Oceanography

Longitude

Temperature change per change in total inflow (°C/monthly sd[cfs])

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

-1.2

Benefits and limitations of in situ data

Benefits

- Accuracy
- Fewer weather limitations
- Can sample any channel size or depth
- High temporal frequency at fixed locations
- Historical record
- High spatial resolution

- Limitations
 - Limited spatial coverage
 - Requires foresight and advanced planning of sampling design
 - Logistical challenges such as crew safety, vandalism, maintenance

Extending Bay-Delta applications with ECOSTRESS

1) Wetland restoration efforts

2) Aquatic heatwaves

Detected Wetland Restoration Effects

At similar tidal stages, decrease in surface water temperature at both restoration sites after restoration
At Tule Red, the median surface water temperature decreased 5.4 °C
At Winter Island, the median surface water temperature decreased by about 0.3 °C

Spatial differences in Smelt Habitat suitability

- Eastern part of the Bay Delta had the worst habitat suitability (likely due to channel size and less of a cool water influence from the ocean/tides)
- Highlights key areas for potential restoration efforts—areas that retained suitable habitat during certain hours that are also within Delta Smelt Habitat
- Miday hours had less suitable habitat across ecoregions

(Gustine et al., 2023) *in JGR: Biogeosciences*

Heatwave detection with joint air and water in-situ data

Climatology Period: 2015-06-19 – 2023-03-28 Threshold: 90th percentile Five consecutive days above the threshold \Rightarrow "anomaly"

Water heatwaves last longer and are more frequent

.

ĺ	ANH	Air Temperature							Water Temperature						
	Anomaly	Start Date	End Date	Duration	Intensity	Intensity	Intensity	Start Date	End Date	Duration	Intensity	Intensity	Intensity		
					(mean)	(max)	(cum)				(mean)	(max)	(cum)		
	G	8/14/20	8/22/20	9	13.27	20.44	119.44	8/16/20	8/28/20	13	3.51	4.51	45.67		
	н	10/14/20	10/22/20	9	9.82	15.47	88.36	10/15/20	10/25/20	11	3.90	4.68	42.87		
	1	9/5/22	9/9/22	5	13.16	15.38	65.80	9/6/22	9/13/22	8	3.34	4.04	26.73		

MAL	Air Temperature						Water Temperature						
Anomaly	Start Date	End Date	Duration	Intensity (mean, °C)	Intensity (max)	Intensity (cum)	Start Date	End Date	Duration	Intensity (mean, °C)	Intensity (max)	Intensity (cum)	
F	10/14/20	10/22/20	9	10.37	16.28	93.36	10/15/20	10/25/20	11	3.82	4.71	42.04	
G	9/5/22	9/9/22	5	16.05	20.72	80.25	9/6/22	9/13/22	8	3.20	3.93	25.58	

ECOSTRESS fills in spatial gaps

- Red boarder indicates images taken during one of the heatwave events
- We see certain areas that are hot spots (e.g lake like environments in the eastern side)
- Would like community feedback for addressing difference in image timing

Remote sensing applications

- Tidal wetland cooling effect (Enright et al. 2013, Gustine et al. 2023)
 - Also could look at turbidity
- Suitability indices for harmful algal blooms based on residence time and temperature
- Temperature dynamics in the tributaries
- Yolo Bypass floodplain temperatures to inform salmon bioenergetics